test_modeling_tf_electra.py 23.5 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre Debut's avatar
Lysandre Debut committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import ElectraConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Lysandre Debut's avatar
Lysandre Debut committed
21

22
from ..test_configuration_common import ConfigTester
23
from ..test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Lysandre Debut's avatar
Lysandre Debut committed
24
25
26


if is_tf_available():
27
28
    import tensorflow as tf

Sylvain Gugger's avatar
Sylvain Gugger committed
29
    from transformers.models.electra.modeling_tf_electra import (
Lysandre Debut's avatar
Lysandre Debut committed
30
        TFElectraForMaskedLM,
31
        TFElectraForMultipleChoice,
Lysandre Debut's avatar
Lysandre Debut committed
32
        TFElectraForPreTraining,
33
        TFElectraForQuestionAnswering,
34
        TFElectraForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
35
        TFElectraForTokenClassification,
36
        TFElectraModel,
Lysandre Debut's avatar
Lysandre Debut committed
37
38
39
    )


40
41
class TFElectraModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Julien Plu's avatar
Julien Plu committed
67
        self.embedding_size = 128
68
69
70
71
72
73

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
74
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_causal_lm_base_model(
146
147
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
148
149
        config.is_decoder = True

150
151
        model = TFElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
152
        result = model(inputs)
153
154

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(inputs)
156

Sylvain Gugger's avatar
Sylvain Gugger committed
157
        result = model(input_ids)
158

159
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFElectraModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)

        # Also check the case where encoder outputs are not passed
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_causal_lm_base_model_past(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFElectraModel(config=config)

        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)

        output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_base_model_past_with_attn_mask(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFElectraModel(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
        outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        past_key_values = outputs.past_key_values

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat(
            [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
            axis=1,
        )

        output_from_no_past = model(
            next_input_ids,
            attention_mask=attn_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_base_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFElectraModel(config=config)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFElectraModel(config=config)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        encoder_hidden_states = encoder_hidden_states[:1, :, :]
        encoder_attention_mask = encoder_attention_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_for_masked_lm(
416
417
418
419
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
420
        result = model(inputs)
421
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
422

423
    def create_and_check_for_pretraining(
424
425
426
427
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
428
        result = model(inputs)
429
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
430

431
    def create_and_check_for_sequence_classification(
432
433
434
435
436
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
437
        result = model(inputs)
438
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
439

440
    def create_and_check_for_multiple_choice(
441
442
443
444
445
446
447
448
449
450
451
452
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFElectraForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
453
        result = model(inputs)
454
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
455

456
    def create_and_check_for_question_answering(
457
458
459
460
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
461
        result = model(inputs)
462
463
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
464

465
    def create_and_check_for_token_classification(
466
467
468
469
470
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
471
        result = model(inputs)
472
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


Lysandre Debut's avatar
Lysandre Debut committed
489
490
491
492
@require_tf
class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
Julien Plu's avatar
Julien Plu committed
493
494
495
496
497
498
499
        (
            TFElectraModel,
            TFElectraForMaskedLM,
            TFElectraForPreTraining,
            TFElectraForTokenClassification,
            TFElectraForMultipleChoice,
            TFElectraForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
500
            TFElectraForQuestionAnswering,
Julien Plu's avatar
Julien Plu committed
501
        )
Lysandre Debut's avatar
Lysandre Debut committed
502
503
504
        if is_tf_available()
        else ()
    )
505
    test_head_masking = False
506
    test_onnx = False
Lysandre Debut's avatar
Lysandre Debut committed
507
508

    def setUp(self):
509
        self.model_tester = TFElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
510
511
512
513
514
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

515
516
    def test_model(self):
        """Test the base model"""
Lysandre Debut's avatar
Lysandre Debut committed
517
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_causal_lm_base_model(self):
        """Test the base model of the causal LM model

        is_deocder=True, no cross_attention, no encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)

    def test_model_as_decoder(self):
        """Test the base model as a decoder (of an encoder-decoder architecture)

        is_deocder=True + cross_attention + pass encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)

    def test_causal_lm_base_model_past(self):
        """Test causal LM base model with `past_key_values`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past(*config_and_inputs)

    def test_causal_lm_base_model_past_with_attn_mask(self):
        """Test the causal LM base model with `past_key_values` and `attention_mask`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past_with_attn_mask(*config_and_inputs)

    def test_causal_lm_base_model_past_with_large_inputs(self):
        """Test the causal LM base model with `past_key_values` and a longer decoder sequence length"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past_large_inputs(*config_and_inputs)

    def test_decoder_model_past_with_large_inputs(self):
        """Similar to `test_causal_lm_base_model_past_with_large_inputs` but with cross-attention"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
555
556
557

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
558
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
559
560
561

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
562
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
563

564
565
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
566
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
567

568
569
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
570
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
571
572
573

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
574
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
575

Lysandre Debut's avatar
Lysandre Debut committed
576
577
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
578
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
579
580
581

    @slow
    def test_model_from_pretrained(self):
582
        # for model_name in TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
583
        for model_name in ["google/electra-small-discriminator"]:
584
            model = TFElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
585
            self.assertIsNotNone(model)
586
587


588
@require_tf
589
590
591
592
593
594
595
596
597
598
599
600
601
602
class TFElectraModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFElectraForPreTraining.from_pretrained("lysandre/tiny-electra-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6]
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3])

        expected_slice = tf.constant([[-0.24651965, 0.8835437, 1.823782]])
        tf.debugging.assert_near(output[:, :3], expected_slice, atol=1e-4)