convert_tf_checkpoint_to_pytorch.py 3.82 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
16
17
18
19
20
21
22
23
24
"""Convert BERT checkpoint."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re
import argparse
import tensorflow as tf
import torch
25
import numpy as np
thomwolf's avatar
thomwolf committed
26

27
from modeling import BertConfig, BertModel
thomwolf's avatar
thomwolf committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

parser = argparse.ArgumentParser()

## Required parameters
parser.add_argument("--tf_checkpoint_path",
                    default = None,
                    type = str,
                    required = True,
                    help = "Path the TensorFlow checkpoint path.")
parser.add_argument("--bert_config_file",
                    default = None,
                    type = str,
                    required = True,
                    help = "The config json file corresponding to the pre-trained BERT model. \n"
                        "This specifies the model architecture.")
parser.add_argument("--pytorch_dump_path",
                    default = None,
                    type = str,
                    required = True,
                    help = "Path to the output PyTorch model.")

args = parser.parse_args()

def convert():
thomwolf's avatar
thomwolf committed
52
53
54
55
    # Initialise PyTorch model
    config = BertConfig.from_json_file(args.bert_config_file)
    model = BertModel(config)

thomwolf's avatar
thomwolf committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    # Load weights from TF model
    path = args.tf_checkpoint_path
    print("Converting TensorFlow checkpoint from {}".format(path))

    init_vars = tf.train.list_variables(path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading {} with shape {}".format(name, shape))
        array = tf.train.load_variable(path, name)
        print("Numpy array shape {}".format(array.shape))
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
71
72
73
74
75
        if not name.startswith("bert"):
            print("Skipping {}".format(name))
            continue
        else:
            name = name.replace("bert/", "")  # skip "bert/"
76
        print("Loading {}".format(name))
thomwolf's avatar
thomwolf committed
77
        name = name.split('/')
78
79
80
81
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if name[0] in ['redictions', 'eq_relationship'] or name[-1] == "adam_v" or  name[-1] == "adam_m":
            print("Skipping {}".format("/".join(name)))
82
            continue
thomwolf's avatar
thomwolf committed
83
84
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
85
86
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
thomwolf's avatar
thomwolf committed
87
88
            else:
                l = [m_name]
thomwolf's avatar
thomwolf committed
89
90
91
92
            if l[0] == 'kernel':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
thomwolf's avatar
thomwolf committed
93
94
95
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
thomwolf's avatar
thomwolf committed
96
97
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
98
99
        elif m_name == 'kernel':
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
100
101
102
103
104
105
106
107
108
109
110
111
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        pointer.data = torch.from_numpy(array)

    # Save pytorch-model
    torch.save(model.state_dict(), args.pytorch_dump_path)

if __name__ == "__main__":
    convert()