test_modeling_convnext.py 10.8 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch ConvNext model."""
NielsRogge's avatar
NielsRogge committed
16
17
18
19
20

import unittest

from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
21
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
22

23
from ...test_backbone_common import BackboneTesterMixin
Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
26
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
27
28
29
30
31


if is_torch_available():
    import torch

NielsRogge's avatar
NielsRogge committed
32
    from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
NielsRogge's avatar
NielsRogge committed
33
34
35
36
37


if is_vision_available():
    from PIL import Image

38
    from transformers import AutoImageProcessor
NielsRogge's avatar
NielsRogge committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


class ConvNextModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        num_channels=3,
        num_stages=4,
        hidden_sizes=[10, 20, 30, 40],
        depths=[2, 2, 3, 2],
        is_training=True,
        use_labels=True,
        intermediate_size=37,
        hidden_act="gelu",
NielsRogge's avatar
NielsRogge committed
55
        num_labels=10,
NielsRogge's avatar
NielsRogge committed
56
        initializer_range=0.02,
NielsRogge's avatar
NielsRogge committed
57
        out_features=["stage2", "stage3", "stage4"],
58
        out_indices=[2, 3, 4],
NielsRogge's avatar
NielsRogge committed
59
60
61
62
63
64
65
66
67
68
69
70
71
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.num_stages = num_stages
        self.hidden_sizes = hidden_sizes
        self.depths = depths
        self.is_training = is_training
        self.use_labels = use_labels
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
NielsRogge's avatar
NielsRogge committed
72
        self.num_labels = num_labels
NielsRogge's avatar
NielsRogge committed
73
        self.initializer_range = initializer_range
NielsRogge's avatar
NielsRogge committed
74
        self.out_features = out_features
75
        self.out_indices = out_indices
NielsRogge's avatar
NielsRogge committed
76
77
78
79
80
81
82
        self.scope = scope

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
NielsRogge's avatar
NielsRogge committed
83
            labels = ids_tensor([self.batch_size], self.num_labels)
NielsRogge's avatar
NielsRogge committed
84
85
86
87
88
89
90
91
92
93
94
95
96

        config = self.get_config()
        return config, pixel_values, labels

    def get_config(self):
        return ConvNextConfig(
            num_channels=self.num_channels,
            hidden_sizes=self.hidden_sizes,
            depths=self.depths,
            num_stages=self.num_stages,
            hidden_act=self.hidden_act,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
97
            out_features=self.out_features,
98
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
99
            num_labels=self.num_labels,
NielsRogge's avatar
NielsRogge committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = ConvNextModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected last hidden states: B, C, H // 32, W // 32
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
        )

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        model = ConvNextForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
NielsRogge's avatar
NielsRogge committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_backbone(self, config, pixel_values, labels):
        model = ConvNextBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify hidden states
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))
        self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])

        # verify backbone works with out_features=None
        config.out_features = None
        model = ConvNextBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)
        self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
NielsRogge's avatar
NielsRogge committed
148
149
150
151
152
153
154
155
156

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
157
class ConvNextModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
158
159
160
161
162
163
164
165
166
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            ConvNextModel,
            ConvNextForImageClassification,
NielsRogge's avatar
NielsRogge committed
167
            ConvNextBackbone,
NielsRogge's avatar
NielsRogge committed
168
169
170
171
        )
        if is_torch_available()
        else ()
    )
172
    pipeline_model_mapping = (
173
        {"image-feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
174
175
176
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
177

178
    fx_compatible = True
NielsRogge's avatar
NielsRogge committed
179
180
181
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
182
    has_attentions = False
NielsRogge's avatar
NielsRogge committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    def setUp(self):
        self.model_tester = ConvNextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ConvNextConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    @unittest.skip(reason="ConvNext does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="ConvNext does not support input and output embeddings")
201
    def test_model_get_set_embeddings(self):
NielsRogge's avatar
NielsRogge committed
202
203
        pass

NielsRogge's avatar
NielsRogge committed
204
205
206
207
    @unittest.skip(reason="ConvNext does not use feedforward chunking")
    def test_feed_forward_chunking(self):
        pass

NielsRogge's avatar
NielsRogge committed
208
209
210
211
    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

212
213
214
215
    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_stages = self.model_tester.num_stages
            self.assertEqual(len(hidden_states), expected_num_stages + 1)

            # ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.image_size // 4, self.model_tester.image_size // 4],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
254
255
256
        model_name = "facebook/convnext-tiny-224"
        model = ConvNextModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
257
258
259
260
261
262
263
264
265
266
267
268


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class ConvNextModelIntegrationTest(unittest.TestCase):
    @cached_property
269
270
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
271
272
273
274
275

    @slow
    def test_inference_image_classification_head(self):
        model = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224").to(torch_device)

276
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
277
        image = prepare_img()
278
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
279
280
281
282
283
284
285
286
287
288
289
290

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-0.0260, -0.4739, 0.1911]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
291
292
293
294
295
296
297
298
299
300
301


@require_torch
class ConvNextBackboneTest(unittest.TestCase, BackboneTesterMixin):
    all_model_classes = (ConvNextBackbone,) if is_torch_available() else ()
    config_class = ConvNextConfig

    has_attentions = False

    def setUp(self):
        self.model_tester = ConvNextModelTester(self)