test_feature_extraction_detr.py 14.1 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import pathlib
import unittest

import numpy as np

from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow

from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import DetrFeatureExtractor


class DetrFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=18,
        max_size=1333,  # by setting max_size > max_resolution we're effectively not testing this :p
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.max_size = max_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "max_size": self.max_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
        This function computes the expected height and width when providing images to DetrFeatureExtractor,
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
                expected_height = int(self.size * h / w)
                expected_width = self.size
            elif w > h:
                expected_height = self.size
                expected_width = int(self.size * w / h)
            else:
                expected_height = self.size
                expected_width = self.size

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width


@require_torch
@require_vision
class DetrFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = DetrFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = DetrFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
        self.assertTrue(hasattr(feature_extractor, "max_size"))

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_equivalence_pad_and_create_pixel_mask(self):
        # Initialize feature_extractors
        feature_extractor_1 = self.feature_extraction_class(**self.feat_extract_dict)
        feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test whether the method "pad_and_return_pixel_mask" and calling the feature extractor return the same tensors
        encoded_images_with_method = feature_extractor_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt")
        encoded_images = feature_extractor_2(image_inputs, return_tensors="pt")

        assert torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
        assert torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4)

    @slow
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        # encode them
256
        feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50")
NielsRogge's avatar
NielsRogge committed
257
258
259
260
261
262
263
264
265
266
267
        encoding = feature_extractor(images=image, annotations=target, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
        assert torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)

        # verify area
        expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
268
        assert torch.allclose(encoding["labels"][0]["area"], expected_area)
NielsRogge's avatar
NielsRogge committed
269
270
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
271
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
272
        expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
273
        assert torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)
NielsRogge's avatar
NielsRogge committed
274
275
        # verify image_id
        expected_image_id = torch.tensor([39769])
276
        assert torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)
NielsRogge's avatar
NielsRogge committed
277
278
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
279
        assert torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)
NielsRogge's avatar
NielsRogge committed
280
281
        # verify class_labels
        expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
282
        assert torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)
NielsRogge's avatar
NielsRogge committed
283
284
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
285
        assert torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)
NielsRogge's avatar
NielsRogge committed
286
287
        # verify size
        expected_size = torch.tensor([800, 1066])
288
        assert torch.allclose(encoding["labels"][0]["size"], expected_size)
NielsRogge's avatar
NielsRogge committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

    @slow
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        # encode them
        # TODO replace by .from_pretrained facebook/detr-resnet-50-panoptic
        feature_extractor = DetrFeatureExtractor(format="coco_panoptic")
        encoding = feature_extractor(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
        assert torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)

        # verify area
        expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
315
        assert torch.allclose(encoding["labels"][0]["area"], expected_area)
NielsRogge's avatar
NielsRogge committed
316
317
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
318
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
319
        expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
320
        assert torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)
NielsRogge's avatar
NielsRogge committed
321
322
        # verify image_id
        expected_image_id = torch.tensor([39769])
323
        assert torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)
NielsRogge's avatar
NielsRogge committed
324
325
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
326
        assert torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)
NielsRogge's avatar
NielsRogge committed
327
328
        # verify class_labels
        expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
329
        assert torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)
NielsRogge's avatar
NielsRogge committed
330
331
        # verify masks
        expected_masks_sum = 822338
332
        self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
NielsRogge's avatar
NielsRogge committed
333
334
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
335
        assert torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)
NielsRogge's avatar
NielsRogge committed
336
337
        # verify size
        expected_size = torch.tensor([800, 1066])
338
        assert torch.allclose(encoding["labels"][0]["size"], expected_size)