"test/vscode:/vscode.git/clone" did not exist on "c77762d57f4161efae8222ad828b818d95f8d268"
test_pipelines_visual_question_answering.py 9.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
from datasets import load_dataset

19
20
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
21
22
from transformers.testing_utils import (
    is_pipeline_test,
23
    is_torch_available,
24
25
26
    nested_simplify,
    require_tf,
    require_torch,
27
    require_torch_accelerator,
28
29
    require_vision,
    slow,
30
    torch_device,
31
)
32

33
from .test_pipelines_common import ANY
34
35


36
37
38
if is_torch_available():
    import torch

39
40
    from transformers.pipelines.pt_utils import KeyDataset

41

42
43
44
45
46
47
48
49
50
51
if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


52
@is_pipeline_test
53
54
@require_torch
@require_vision
55
class VisualQuestionAnsweringPipelineTests(unittest.TestCase):
56
57
    model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING

58
    def get_test_pipeline(self, model, tokenizer, processor):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        examples = [
            {
                "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
                "question": "How many cats are there?",
            },
            {
                "image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
                "question": "How many cats are there?",
            },
        ]
        return vqa_pipeline, examples

    def run_pipeline_test(self, vqa_pipeline, examples):
        outputs = vqa_pipeline(examples, top_k=1)
        self.assertEqual(
            outputs,
            [
                [{"score": ANY(float), "answer": ANY(str)}],
                [{"score": ANY(float), "answer": ANY(str)}],
            ],
        )

    @require_torch
    def test_small_model_pt(self):
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        question = "How many cats are there?"

        outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2)
        self.assertEqual(
            outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
        )

        outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
        )

98
    @require_torch
99
    @require_torch_accelerator
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_small_model_pt_blip2(self):
        vqa_pipeline = pipeline(
            "visual-question-answering", model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration"
        )
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        question = "How many cats are there?"

        outputs = vqa_pipeline(image=image, question=question)
        self.assertEqual(outputs, [{"answer": ANY(str)}])

        outputs = vqa_pipeline({"image": image, "question": question})
        self.assertEqual(outputs, [{"answer": ANY(str)}])

        outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}])
        self.assertEqual(outputs, [[{"answer": ANY(str)}]] * 2)

        vqa_pipeline = pipeline(
            "visual-question-answering",
            model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration",
            model_kwargs={"torch_dtype": torch.float16},
120
            device=torch_device,
121
        )
122
        self.assertEqual(vqa_pipeline.model.device, torch.device("{}:0".format(torch_device)))
123
124
125
126
127
128
        self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16)
        self.assertEqual(vqa_pipeline.model.vision_model.dtype, torch.float16)

        outputs = vqa_pipeline(image=image, question=question)
        self.assertEqual(outputs, [{"answer": ANY(str)}])

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    @slow
    @require_torch
    def test_large_model_pt(self):
        vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        question = "How many cats are there?"

        outputs = vqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
        )

        outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
        )

        outputs = vqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2,
        )

154
155
    @slow
    @require_torch
156
    @require_torch_accelerator
157
158
159
160
161
    def test_large_model_pt_blip2(self):
        vqa_pipeline = pipeline(
            "visual-question-answering",
            model="Salesforce/blip2-opt-2.7b",
            model_kwargs={"torch_dtype": torch.float16},
162
            device=torch_device,
163
        )
164
        self.assertEqual(vqa_pipeline.model.device, torch.device("{}:0".format(torch_device)))
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16)

        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        question = "Question: how many cats are there? Answer:"

        outputs = vqa_pipeline(image=image, question=question)
        self.assertEqual(outputs, [{"answer": "two"}])

        outputs = vqa_pipeline({"image": image, "question": question})
        self.assertEqual(outputs, [{"answer": "two"}])

        outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}])
        self.assertEqual(outputs, [[{"answer": "two"}]] * 2)

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    @require_torch
    def test_small_model_pt_image_list(self):
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        images = [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000004016.png",
        ]

        outputs = vqa_pipeline(image=images, question="How many cats are there?", top_k=1)
        self.assertEqual(
            outputs, [[{"score": ANY(float), "answer": ANY(str)}], [{"score": ANY(float), "answer": ANY(str)}]]
        )

    @require_torch
    def test_small_model_pt_question_list(self):
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        questions = ["How many cats are there?", "Are there any dogs?"]

        outputs = vqa_pipeline(image=image, question=questions, top_k=1)
        self.assertEqual(
            outputs, [[{"score": ANY(float), "answer": ANY(str)}], [{"score": ANY(float), "answer": ANY(str)}]]
        )

    @require_torch
    def test_small_model_pt_both_list(self):
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        images = [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000004016.png",
        ]
        questions = ["How many cats are there?", "Are there any dogs?"]

        outputs = vqa_pipeline(image=images, question=questions, top_k=1)
        self.assertEqual(
            outputs,
            [
                [{"score": ANY(float), "answer": ANY(str)}],
                [{"score": ANY(float), "answer": ANY(str)}],
                [{"score": ANY(float), "answer": ANY(str)}],
                [{"score": ANY(float), "answer": ANY(str)}],
            ],
        )

    @require_torch
    def test_small_model_pt_dataset(self):
        vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
        dataset = load_dataset("hf-internal-testing/dummy_image_text_data", split="train[:2]")
        question = "What's in the image?"

        outputs = vqa_pipeline(image=KeyDataset(dataset, "image"), question=question, top_k=1)
        self.assertEqual(
            outputs,
            [
                [{"score": ANY(float), "answer": ANY(str)}],
                [{"score": ANY(float), "answer": ANY(str)}],
            ],
        )

238
239
240
241
    @require_tf
    @unittest.skip("Visual question answering not implemented in TF")
    def test_small_model_tf(self):
        pass