test_modeling_llama.py 42.8 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Testing suite for the PyTorch LLaMA model."""
Jason Phang's avatar
Jason Phang committed
16

17
import gc
18
import tempfile
Jason Phang's avatar
Jason Phang committed
19
20
import unittest

Yih-Dar's avatar
Yih-Dar committed
21
import pytest
22
from packaging import version
23
24
from parameterized import parameterized

25
from transformers import LlamaConfig, StaticCache, is_torch_available, set_seed
26
from transformers.testing_utils import (
27
    require_bitsandbytes,
28
    require_flash_attn,
29
    require_read_token,
30
31
    require_torch,
    require_torch_gpu,
32
    require_torch_sdpa,
33
34
35
    slow,
    torch_device,
)
Jason Phang's avatar
Jason Phang committed
36

Joao Gante's avatar
Joao Gante committed
37
from ...generation.test_utils import GenerationTesterMixin
Jason Phang's avatar
Jason Phang committed
38
from ...test_configuration_common import ConfigTester
39
from ...test_modeling_common import ModelTesterMixin, ids_tensor
Joao Gante's avatar
Joao Gante committed
40
from ...test_pipeline_mixin import PipelineTesterMixin
Jason Phang's avatar
Jason Phang committed
41
42
43
44
45


if is_torch_available():
    import torch

46
47
    from transformers import (
        LlamaForCausalLM,
48
        LlamaForQuestionAnswering,
49
        LlamaForSequenceClassification,
50
        LlamaForTokenClassification,
51
52
53
        LlamaModel,
        LlamaTokenizer,
    )
54
55
56
57
58
    from transformers.models.llama.modeling_llama import (
        LlamaDynamicNTKScalingRotaryEmbedding,
        LlamaLinearScalingRotaryEmbedding,
        LlamaRotaryEmbedding,
    )
Jason Phang's avatar
Jason Phang committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72


class LlamaModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
73
        num_hidden_layers=2,
Jason Phang's avatar
Jason Phang committed
74
75
76
77
78
79
80
81
82
83
84
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
85
        pad_token_id=0,
Jason Phang's avatar
Jason Phang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
109
        self.pad_token_id = pad_token_id
Jason Phang's avatar
Jason Phang committed
110
111
112
113
114
115
116
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
117
            input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
Jason Phang's avatar
Jason Phang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return LlamaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
149
            pad_token_id=self.pad_token_id,
Jason Phang's avatar
Jason Phang committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        )

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LlamaModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = LlamaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = LlamaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = LlamaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
Joao Gante's avatar
Joao Gante committed
288
class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
289
    all_model_classes = (
290
291
292
293
294
295
296
        (
            LlamaModel,
            LlamaForCausalLM,
            LlamaForSequenceClassification,
            LlamaForQuestionAnswering,
            LlamaForTokenClassification,
        )
297
298
299
        if is_torch_available()
        else ()
    )
Jason Phang's avatar
Jason Phang committed
300
    all_generative_model_classes = (LlamaForCausalLM,) if is_torch_available() else ()
Joao Gante's avatar
Joao Gante committed
301
302
303
304
305
306
    pipeline_model_mapping = (
        {
            "feature-extraction": LlamaModel,
            "text-classification": LlamaForSequenceClassification,
            "text-generation": LlamaForCausalLM,
            "zero-shot": LlamaForSequenceClassification,
307
            "question-answering": LlamaForQuestionAnswering,
308
            "token-classification": LlamaForTokenClassification,
Joao Gante's avatar
Joao Gante committed
309
310
311
312
        }
        if is_torch_available()
        else {}
    )
Jason Phang's avatar
Jason Phang committed
313
    test_headmasking = False
Joao Gante's avatar
Joao Gante committed
314
    test_pruning = False
315
    fx_compatible = True
Jason Phang's avatar
Jason Phang committed
316

317
318
319
320
    # Need to use `0.8` instead of `0.9` for `test_cpu_offload`
    # This is because we are hitting edge cases with the causal_mask buffer
    model_split_percents = [0.5, 0.7, 0.8]

321
322
323
    # used in `test_torch_compile`
    _torch_compile_test_ckpt = "meta-llama/Llama-2-7b-hf"

Jason Phang's avatar
Jason Phang committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def setUp(self):
        self.model_tester = LlamaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LlamaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    def test_llama_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_llama_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_llama_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    def test_llama_token_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
        model = LlamaForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
        self.assertEqual(
            result.logits.shape,
            (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
        )

396
    @unittest.skip("Llama buffers include complex numbers, which breaks this test")
Jason Phang's avatar
Jason Phang committed
397
398
    def test_save_load_fast_init_from_base(self):
        pass
399
400

    @parameterized.expand([("linear",), ("dynamic",)])
401
    def test_model_rope_scaling_from_config(self, scaling_type):
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        short_input = ids_tensor([1, 10], config.vocab_size)
        long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        original_model = LlamaModel(config)
        original_model.to(torch_device)
        original_model.eval()
        original_short_output = original_model(short_input).last_hidden_state
        original_long_output = original_model(long_input).last_hidden_state

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        config.rope_scaling = {"type": scaling_type, "factor": 10.0}
        scaled_model = LlamaModel(config)
        scaled_model.to(torch_device)
        scaled_model.eval()
        scaled_short_output = scaled_model(short_input).last_hidden_state
        scaled_long_output = scaled_model(long_input).last_hidden_state

        # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
        # maximum sequence length, so the outputs for the short input should match.
        if scaling_type == "dynamic":
            self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
        else:
            self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))

        # The output should be different for long inputs
        self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
430

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    def test_model_rope_scaling(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        hidden_size = config.hidden_size
        num_heads = config.num_attention_heads
        head_dim = hidden_size // num_heads
        scaling_factor = 10
        short_input_length = 10
        long_input_length = int(config.max_position_embeddings * 1.5)

        # Inputs
        x = torch.randn(1, dtype=torch.float32, device=torch_device)  # used exlusively to get the dtype and the device
        position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
        position_ids_short = position_ids_short.unsqueeze(0)
        position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
        position_ids_long = position_ids_long.unsqueeze(0)

        # Sanity check original RoPE
        original_rope = LlamaRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
        ).to(torch_device)
        original_cos_short, original_sin_short = original_rope(x, position_ids_short)
        original_cos_long, original_sin_long = original_rope(x, position_ids_long)
        torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
        torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])

        # Sanity check linear RoPE scaling
        # New position "x" should match original position with index "x/scaling_factor"
        linear_scaling_rope = LlamaLinearScalingRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
            scaling_factor=scaling_factor,
        ).to(torch_device)
        linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
        linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
        torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
        torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
        for new_position in range(0, long_input_length, scaling_factor):
            original_position = int(new_position // scaling_factor)
            torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
            torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])

        # Sanity check Dynamic NTK RoPE scaling
        # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
        # with scaling_factor (or that `inv_freq` decreases)
        ntk_scaling_rope = LlamaDynamicNTKScalingRotaryEmbedding(
            head_dim,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
            scaling_factor=scaling_factor,
        ).to(torch_device)
        ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
        ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
        torch.testing.assert_close(ntk_cos_short, original_cos_short)
        torch.testing.assert_close(ntk_sin_short, original_sin_short)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_cos_long, original_cos_long)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_sin_long, original_sin_long)
        self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())

494
495
    @require_flash_attn
    @require_torch_gpu
496
    @require_bitsandbytes
Yih-Dar's avatar
Yih-Dar committed
497
    @pytest.mark.flash_attn_test
498
    @require_read_token
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-hf",
            load_in_4bit=True,
            device_map={"": 0},
        )

        tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

        texts = ["hi", "Hello this is a very long sentence"]

        tokenizer.padding_side = "right"
        tokenizer.pad_token = tokenizer.eos_token

        inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)

        output_native = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_native = tokenizer.batch_decode(output_native)

        model = LlamaForCausalLM.from_pretrained(
523
            "meta-llama/Llama-2-7b-hf", load_in_4bit=True, device_map={"": 0}, attn_implementation="flash_attention_2"
524
525
526
527
528
529
530
        )

        output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_fa_2 = tokenizer.batch_decode(output_fa_2)

        self.assertListEqual(output_native, output_fa_2)

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    @require_flash_attn
    @require_torch_gpu
    @slow
    def test_use_flash_attention_2_true(self):
        """
        NOTE: this is the only test testing that the legacy `use_flash_attention=2` argument still works as intended.
        """
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            with tempfile.TemporaryDirectory() as tmp_dir:
                model = model_class(config)
                model.save_pretrained(tmp_dir)

                new_model = LlamaForCausalLM.from_pretrained(
                    tmp_dir, use_flash_attention_2=True, torch_dtype=torch.float16
                ).to("cuda")

                self.assertTrue(new_model.config._attn_implementation == "flash_attention_2")

                has_flash = False
                for name, submodule in new_model.named_modules():
                    if "FlashAttention" in submodule.__class__.__name__:
                        has_flash = True
                        break
                if not has_flash:
                    raise ValueError("The flash model should have flash attention layers")

    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        max_new_tokens = 30

fxmarty's avatar
fxmarty committed
566
        tokenizer = LlamaTokenizer.from_pretrained("saibo/llama-1B")
567
568

        model_sdpa = LlamaForCausalLM.from_pretrained(
fxmarty's avatar
fxmarty committed
569
            "saibo/llama-1B",
570
571
572
573
574
575
576
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
        ).to(torch_device)

        self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

        model_eager = LlamaForCausalLM.from_pretrained(
fxmarty's avatar
fxmarty committed
577
            "saibo/llama-1B",
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            attn_implementation="eager",
        ).to(torch_device)

        self.assertTrue(model_eager.config._attn_implementation == "eager")

        for name, submodule in model_eager.named_modules():
            if "SdpaAttention" in submodule.__class__.__name__:
                raise ValueError("The eager model should not have SDPA attention layers")

        has_sdpa = False
        for name, submodule in model_sdpa.named_modules():
            if "SdpaAttention" in submodule.__class__.__name__:
                has_sdpa = True
                break
        if not has_sdpa:
            raise ValueError("The SDPA model should have SDPA attention layers")

fxmarty's avatar
fxmarty committed
597
598
599
600
601
        texts = [
            "hi here's a longer context, getting longer and",
            "Hello this is a very long sentence my friend, very long for real",
            "Today I am in Paris and",
        ]
602
603
604
605
606
607
608
609
610

        for padding_side in ["left", "right"]:
            tokenizer.padding_side = padding_side
            tokenizer.pad_token = tokenizer.eos_token

            inputs = tokenizer(texts, return_tensors="pt", padding=True).to(torch_device)

            res_eager = model_eager.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
            res_sdpa = model_sdpa.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
611
612
613
614
615
616
617
618

            with self.subTest(f"{padding_side}"):
                torch.testing.assert_close(
                    res_eager,
                    res_sdpa,
                    msg=f"\n{tokenizer.batch_decode(res_eager)} \nvs\n{tokenizer.batch_decode(res_sdpa)}",
                )

619

620
@require_torch_gpu
621
class LlamaIntegrationTest(unittest.TestCase):
622
623
624
625
626
627
628
629
630
631
    # This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
    # Depending on the hardware we get different logits / generations
    cuda_compute_capability_major_version = None

    @classmethod
    def setUpClass(cls):
        if is_torch_available() and torch.cuda.is_available():
            # 8 is for A100 / A10 and 7 for T4
            cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]

632
    @slow
633
634
    @require_read_token
    def test_model_7b_logits_bf16(self):
635
636
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]

637
638
639
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
        )
640

641
642
        with torch.no_grad():
            out = model(torch.tensor([input_ids]).to(torch_device))
643
644
        # Expected mean on dim = -1

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        # fmt: off
        EXPECTED_MEAN = {
            7: torch.tensor([[-6.5061, -4.1147, -4.9669, -3.2038, 0.8069, -2.9694, 1.2864, -3.3786]]),
            8: torch.tensor([[-6.5208, -4.1218, -4.9377, -3.2536,  0.8127, -2.9811,  1.2918, -3.3848]])
        }

        self.assertTrue(torch.allclose(EXPECTED_MEAN[self.cuda_compute_capability_major_version].to(torch_device), out.logits.mean(-1), atol=1e-2, rtol=1e-2))

        # slicing logits[0, 0, 0:15]
        EXPECTED_SLICE = {
            7: torch.tensor([[-12.5000, -7.0625, -0.6289, -7.8750, -6.9688, -7.8125, -6.4688, -7.4375, -7.6875, -6.9375, -6.0312, -7.0000, -1.8594, 1.8438, -8.5000]]),
            8: torch.tensor([[-12.5625,  -7.1250,  -0.6289,  -7.8750,  -6.9688,  -7.8125,  -6.5000, -7.4375,  -7.6562,  -6.9688,  -6.0312,  -7.0312,  -1.8203,   1.8750, -8.5000]])
        }
        # fmt: on

        self.assertTrue(
            torch.allclose(
                EXPECTED_SLICE[self.cuda_compute_capability_major_version].to(torch_device),
                out.logits[0, 0, :15],
                atol=1e-3,
                rtol=1e-3,
            )
667
668
669
        )

    @slow
670
671
672
673
    @require_read_token
    def test_model_7b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]

674
        model = LlamaForCausalLM.from_pretrained(
675
            "meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
676
677
        )

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        with torch.no_grad():
            out = model(torch.tensor([input_ids]).to(torch_device))

        # fmt: off
        # Expected mean on dim = -1
        EXPECTED_MEAN = {
            7: torch.tensor([[-6.6420, -4.1227, -4.9809, -3.2041, 0.8261, -3.0052, 1.2957, -3.3648]]),
            8: torch.tensor([[-6.6544, -4.1259, -4.9840, -3.2456,  0.8261, -3.0124,  1.2971, -3.3641]])
        }

        self.assertTrue(torch.allclose(EXPECTED_MEAN[self.cuda_compute_capability_major_version].to(torch_device), out.logits.mean(-1), atol=1e-2, rtol=1e-2))

        # slicing logits[0, 0, 0:15]
        EXPECTED_SLICE = {
            7: torch.tensor([-12.8125, -7.3359, -0.4846, -8.0234, -7.2383, -7.9922, -6.4805, -7.7344, -7.8125, -7.0078, -6.1797, -7.1094, -1.8633, 1.9736, -8.6016]),
            8: torch.tensor([-12.8281,  -7.4609,  -0.4668,  -8.0703,  -7.2539,  -8.0078,  -6.4961, -7.7734,  -7.8516,  -7.0352,  -6.2188,  -7.1367,  -1.8564,   1.9922, -8.6328])
        }
        # fmt: on

        self.assertTrue(
            torch.allclose(
                EXPECTED_SLICE[self.cuda_compute_capability_major_version].to(torch_device),
                out.logits[0, 0, :15],
                atol=1e-3,
                rtol=1e-3,
            )
        )
705

706
707
708
709
    @slow
    @require_torch_gpu
    @require_read_token
    def test_compile_static_cache(self):
710
711
712
713
714
        # `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
        # work as intended. See https://github.com/pytorch/pytorch/issues/121943
        if version.parse(torch.__version__) < version.parse("2.3.0"):
            self.skipTest("This test requires torch >= 2.3 to run.")

715
        NUM_TOKENS_TO_GENERATE = 40
716
717
        # Note on `EXPECTED_TEXT_COMPLETION`'s diff: the current value matches the original test if the original test
        # was changed to have a cache of 53 tokens (as opposed to 4096), on Ampere GPUs.
718
719
720
721
722
        #
        # Key 9 for MI300, Key 8 for A100/A10, and Key 7 for T4.
        #
        # Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s,
        # considering differences in hardware processing and potential deviations in generated text.
723
724
        EXPECTED_TEXT_COMPLETION = {
            8: [
725
726
727
728
729
730
731
                "Simply put, the theory of relativity states that 1) the speed of light is constant in all inertial "
                "reference frames, and 2) the laws of physics are the same for all inertial reference frames.\nThe "
                "theory of relativ",
                "My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, "
                "my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
            ],
            7: [
732
733
                "Simply put, the theory of relativity states that 1) the speed of light is constant in all inertial reference frames, and 2) the laws of physics are the same for all inertial reference frames.\nThe theory of relativ",
                "My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
734
            ],
735
736
737
738
739
740
741
            9: [
                "Simply put, the theory of relativity states that 1) the speed of light is constant in all inertial"
                " reference frames, and 2) the laws of physics are the same for all inertial reference frames.\nThe "
                "theory of relativ",
                "My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs,"
                " my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p",
            ],
742
        }
743
        expected_text_completion_idx = 8
744

745
746
747
748
749
        prompts = [
            "Simply put, the theory of relativity states that ",
            "My favorite all time favorite condiment is ketchup.",
        ]
        tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token="</s>", padding_side="right")
750
751
752
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-hf", device_map="sequential", torch_dtype=torch.float16
        )
753
754
        inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)

755
756
757
        # Dynamic Cache
        generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
        dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
758
759
760
        self.assertEqual(
            EXPECTED_TEXT_COMPLETION[expected_text_completion_idx], dynamic_text
        )  # Both GPU architectures have the same output
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

        # Static Cache
        generated_ids = model.generate(
            **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
        )
        static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], static_text)

        # Static Cache + compile
        model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
        generated_ids = model.generate(
            **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
        )
        static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], static_compiled_text)
776

777

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
@slow
@require_torch_gpu
class Mask4DTestHard(unittest.TestCase):
    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def setUp(self):
        model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
        self.model_dtype = torch.float32
        self.tokenizer = LlamaTokenizer.from_pretrained(model_name)
        self.model = LlamaForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device)

    def get_test_data(self):
        template = "my favorite {}"
        items = ("pet is a", "artist plays a", "name is L")  # same number of tokens in each item

        batch_separate = [template.format(x) for x in items]  # 3 separate lines
        batch_shared_prefix = template.format(" ".join(items))  # 1 line with options concatenated

        input_ids = self.tokenizer(batch_separate, return_tensors="pt").input_ids.to(torch_device)
        input_ids_shared_prefix = self.tokenizer(batch_shared_prefix, return_tensors="pt").input_ids.to(torch_device)

        mask_shared_prefix = torch.tensor(
            [
                [
                    [
                        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1],
                    ]
                ]
            ],
            device=torch_device,
        )

        position_ids = torch.arange(input_ids.shape[1]).tile(input_ids.shape[0], 1).to(torch_device)

        # building custom positions ids based on custom mask
        position_ids_shared_prefix = (mask_shared_prefix.sum(dim=-1) - 1).reshape(1, -1)
        # effectively: position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5]]).to(device)

        # inverting the mask
        min_dtype = torch.finfo(self.model_dtype).min
        mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=self.model_dtype) * min_dtype

        return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix

    def test_stacked_causal_mask(self):
        (
            input_ids,
            position_ids,
            input_ids_shared_prefix,
            mask_shared_prefix,
            position_ids_shared_prefix,
        ) = self.get_test_data()

        # regular batch
        logits = self.model.forward(input_ids, position_ids=position_ids).logits
        logits_last = logits[:, -1, :]  # last tokens in each batch line
        decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]

        # single forward run with 4D custom mask
        logits_shared_prefix = self.model.forward(
            input_ids_shared_prefix, attention_mask=mask_shared_prefix, position_ids=position_ids_shared_prefix
        ).logits
        logits_shared_prefix_last = logits_shared_prefix[
            0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
        ]  # last three tokens
        decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]

        self.assertEqual(decoded, decoded_shared_prefix)

    def test_partial_stacked_causal_mask(self):
        # Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks

        (
            input_ids,
            position_ids,
            input_ids_shared_prefix,
            mask_shared_prefix,
            position_ids_shared_prefix,
        ) = self.get_test_data()

        # regular batch
        logits = self.model.forward(input_ids, position_ids=position_ids).logits
        logits_last = logits[:, -1, :]  # last tokens in each batch line
        decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]

        # 2 forward runs with custom 4D masks
        part_a = 3  # split point

        input_1a = input_ids_shared_prefix[:, :part_a]
        position_ids_1a = position_ids_shared_prefix[:, :part_a]
        mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]

        outs_1a = self.model.forward(input_1a, attention_mask=mask_1a, position_ids=position_ids_1a)
        past_key_values_a = outs_1a["past_key_values"]

        # Case 1: we pass a 4D attention mask regarding the current sequence length (i.e. [..., seq_len, full_len])
        input_1b = input_ids_shared_prefix[:, part_a:]
        position_ids_1b = position_ids_shared_prefix[:, part_a:]
        mask_1b = mask_shared_prefix[:, :, part_a:, :]
        outs_1b = self.model.forward(
            input_1b,
            attention_mask=mask_1b,
            position_ids=position_ids_1b,
            past_key_values=past_key_values_a,
        )
        decoded_1b = [
            self.tokenizer.decode(t)
            for t in outs_1b.logits.argmax(-1)[
                0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
            ]
        ]
        self.assertEqual(decoded, decoded_1b)

    def test_stacked_causal_mask_static_cache(self):
        """same as above but with StaticCache"""
        (
            input_ids,
            position_ids,
            input_ids_shared_prefix,
            mask_shared_prefix,
            position_ids_shared_prefix,
        ) = self.get_test_data()

        # regular batch
        logits = self.model.forward(input_ids, position_ids=position_ids).logits
        logits_last = logits[:, -1, :]  # last tokens in each batch line
        decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]

        # upgrade the model with StaticCache
        max_cache_len = 16  # note that max_cache_len is greater than the attention_mask.shape[-1]
        past_key_values = StaticCache(
            config=self.model.config,
            max_batch_size=1,
            max_cache_len=max_cache_len,
            device=torch_device,
            dtype=self.model.dtype,
        )

        padded_attention_mask = torch.nn.functional.pad(
            input=mask_shared_prefix,
            pad=(0, max_cache_len - mask_shared_prefix.shape[-1]),
            mode="constant",
            value=torch.finfo(self.model_dtype).min,
        )

        # single forward run with 4D custom mask
        logits_shared_prefix = self.model.forward(
            input_ids_shared_prefix,
            attention_mask=padded_attention_mask,
            position_ids=position_ids_shared_prefix,
            cache_position=torch.arange(input_ids_shared_prefix.shape[-1], device=torch_device),
            past_key_values=past_key_values,
        ).logits
        logits_shared_prefix_last = logits_shared_prefix[
            0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
        ]  # last three tokens
        decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]

        self.assertEqual(decoded, decoded_shared_prefix)

    def test_partial_stacked_causal_mask_static_cache(self):
        # Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks
        # we pass a 4D attention mask shaped [..., seq_len, full_static_cache_len])
        (
            input_ids,
            position_ids,
            input_ids_shared_prefix,
            mask_shared_prefix,
            position_ids_shared_prefix,
        ) = self.get_test_data()

        # regular batch
        logits = self.model.forward(input_ids, position_ids=position_ids).logits
        logits_last = logits[:, -1, :]  # last tokens in each batch line
        decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]

        # upgrade the model with StaticCache
        max_cache_len = 16  # note that max_cache_len is greater than the attention_mask.shape[-1]
        past_key_values = StaticCache(
            config=self.model.config,
            max_batch_size=1,
            max_cache_len=max_cache_len,
            device=torch_device,
            dtype=self.model.dtype,
        )

        # forward run for the first part of input
        part_a = 3  # split point

        input_1a = input_ids_shared_prefix[:, :part_a]
        position_ids_1a = position_ids_shared_prefix[:, :part_a]
        mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]

        padded_mask_1a = torch.nn.functional.pad(
            input=mask_1a,
            pad=(0, max_cache_len - mask_1a.shape[-1]),
            mode="constant",
            value=torch.finfo(self.model_dtype).min,
        )

        _ = self.model.forward(
            input_1a,
            attention_mask=padded_mask_1a,
            position_ids=position_ids_1a,
            cache_position=torch.arange(part_a, device=torch_device),
            past_key_values=past_key_values,
        )

        # forward run for the second part of input
        input_1b = input_ids_shared_prefix[:, part_a:]
        position_ids_1b = position_ids_shared_prefix[:, part_a:]
        mask_1b = mask_shared_prefix[:, :, part_a:, :]

        padded_mask_1b = torch.nn.functional.pad(
            input=mask_1b, pad=(0, max_cache_len - mask_1b.shape[-1]), mode="constant", value=0
        )

        outs_1b = self.model.forward(
            input_1b,
            attention_mask=padded_mask_1b,
            position_ids=position_ids_1b,
            cache_position=torch.arange(
                part_a,
                input_ids_shared_prefix.shape[-1],
                device=torch_device,
            ),
            past_key_values=past_key_values,
        )
        decoded_1b = [
            self.tokenizer.decode(t)
            for t in outs_1b.logits.argmax(-1)[
                0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
            ]
        ]
        self.assertEqual(decoded, decoded_1b)