test_modeling_kosmos2.py 33.3 KB
Newer Older
Yih-Dar's avatar
Yih-Dar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch KOSMOS-2 model."""
Yih-Dar's avatar
Yih-Dar committed
16
17
18
19
20
21
22
23
24
25
26
27

import copy
import inspect
import os
import tempfile
import unittest

import numpy as np
import requests

from transformers import AutoModelForVision2Seq, AutoProcessor, Kosmos2Config
from transformers.models.kosmos2.configuration_kosmos2 import Kosmos2TextConfig, Kosmos2VisionConfig
28
from transformers.testing_utils import IS_ROCM_SYSTEM, require_torch, require_vision, slow, torch_device
Yih-Dar's avatar
Yih-Dar committed
29
30
31
32
33
34
35
36
37
38
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
39
from ...test_pipeline_mixin import PipelineTesterMixin
Yih-Dar's avatar
Yih-Dar committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197


if is_torch_available():
    import torch

    from transformers import Kosmos2ForConditionalGeneration, Kosmos2Model


if is_vision_available():
    from PIL import Image


class Kosmos2VisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=32,
        patch_size=4,
        num_channels=3,
        is_training=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=1e-10,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return Kosmos2VisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


class Kosmos2TextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return Kosmos2TextConfig(
            vocab_size=self.vocab_size,
            embed_dim=self.hidden_size,
            layers=self.num_hidden_layers,
            attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


class Kosmos2ModelTester:
    def __init__(self, parent, text_kwargs=None, vision_kwargs=None, latent_query_num=3, is_training=True):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

        self.parent = parent
        self.text_model_tester = Kosmos2TextModelTester(parent, **text_kwargs)
        self.vision_model_tester = Kosmos2VisionModelTester(parent, **vision_kwargs)
198
        self.batch_size = self.text_model_tester.batch_size  # need bs for batching_equivalence test
Yih-Dar's avatar
Yih-Dar committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        self.latent_query_num = latent_query_num
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()

        # build `image_embeds_position_mask`
        image_embeds_position_mask = torch.zeros_like(input_ids)
        image_embeds_position_mask[:, 1 : 1 + self.latent_query_num :] = 1

        config = self.get_config()

        return config, input_ids, attention_mask, image_embeds_position_mask, pixel_values

    def get_config(self):
        return Kosmos2Config(
            self.text_model_tester.get_config().to_dict(),
            self.vision_model_tester.get_config().to_dict(),
            latent_query_num=self.latent_query_num,
        )

    def create_and_check_model(self, config, input_ids, attention_mask, image_embeds_position_mask, pixel_values):
        model = Kosmos2Model(config).to(torch_device).eval()
        with torch.no_grad():
            result = model(pixel_values, input_ids, image_embeds_position_mask, attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.text_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size),
        )
        self.parent.assertEqual(
            result.image_embeds.shape,
            (self.text_model_tester.batch_size, self.latent_query_num, self.text_model_tester.hidden_size),
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, image_embeds_position_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "image_embeds_position_mask": image_embeds_position_mask,
            "pixel_values": pixel_values,
        }
        return config, inputs_dict


@require_torch
247
class Kosmos2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
248
249
    all_model_classes = (Kosmos2Model, Kosmos2ForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (Kosmos2ForConditionalGeneration,) if is_torch_available() else ()
250
251
252
253
254
    pipeline_model_mapping = (
        {"feature-extraction": Kosmos2Model, "image-to-text": Kosmos2ForConditionalGeneration}
        if is_torch_available()
        else {}
    )
Yih-Dar's avatar
Yih-Dar committed
255
256
257
258
259
260
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

261
262
263
264
265
266
    # TODO: `image-to-text` pipeline for this model needs Processor.
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return pipeline_test_casse_name == "ImageToTextPipelineTests"

Yih-Dar's avatar
Yih-Dar committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)

        if return_labels:
            if model_class.__name__ == "Kosmos2ForConditionalGeneration":
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.text_model_tester.batch_size, self.model_tester.text_model_tester.seq_length),
                    dtype=torch.long,
                    device=torch_device,
                )

        return inputs_dict

    def setUp(self):
        self.model_tester = Kosmos2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Kosmos2Config, hidden_size=37)

    # overwrite from common to skip `image_to_text_projection.latent_query`
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    if name == "image_to_text_projection.latent_query":
                        # The original code use ` nn.Parameter(torch.randn(...))` for which this test won't pass.
                        continue
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.text_config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Yih-Dar's avatar
Yih-Dar committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    # overwrite from common in order to use `self.model_tester.text_model_tester.num_hidden_layers`
    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester,
                "expected_num_hidden_layers",
                self.model_tester.text_model_tester.num_hidden_layers + 1,
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.text_model_tester.seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.text_model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    # overwrite from common in order to use `config.text_config.vocab_size` instead of `config.vocab_size`
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.text_config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

    @slow
    def test_model_from_pretrained(self):
426
427
428
        model_name = "microsoft/kosmos-2-patch14-224"
        model = Kosmos2Model.from_pretrained(model_name)
        self.assertIsNotNone(model)
Yih-Dar's avatar
Yih-Dar committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class)

            main_input_name = model_class.main_input_name

            try:
                main_input = inputs[main_input_name]
                model(main_input, inputs["input_ids"], inputs["image_embeds_position_mask"])
                traced_model = torch.jit.trace(
                    model, (main_input, inputs["input_ids"], inputs["image_embeds_position_mask"])
                )
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()


# We will verify our results on an image of cute cats
def prepare_img():
    url = "https://huggingface.co/hf-internal-testing/Kosmos2-test-image/resolve/main/demo.jpg"
    im = Image.open(requests.get(url, stream=True).raw)
    return im


@require_vision
@require_torch
@slow
class Kosmos2ModelIntegrationTest(unittest.TestCase):
    def run_example(self, prompt, image, model, processor):
        inputs = processor(text=prompt, images=image, return_tensors="pt", padding=True).to(torch_device)

        generation_outputs = model.generate(
            pixel_values=inputs["pixel_values"],
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            image_embeds=None,
            image_embeds_position_mask=inputs["image_embeds_position_mask"],
            use_cache=True,
            max_new_tokens=128,
            output_scores=True,
            return_dict_in_generate=True,
        )

        scores = generation_outputs.scores
        generated_ids = generation_outputs.sequences
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
        # Specify `cleanup_and_extract=False` in order to see the raw model generation.
        processed_text = [processor.post_process_generation(x, cleanup_and_extract=False) for x in generated_text]
        # By default, the generated  text is cleanup and the entities are extracted.
        final_text_with_entities = [processor.post_process_generation(x) for x in generated_text]

        return scores, generated_ids, generated_text, processed_text, final_text_with_entities

    def test_snowman_image_captioning(self):
        url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png"

        image = Image.open(requests.get(url, stream=True).raw)
        image.save("new_image.jpg")
        image = Image.open("new_image.jpg")

        model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224").to(torch_device)
        processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")

        prompt = "<grounding>An image of"
        scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example(
            prompt, image, model, processor
        )
        processed_text = processed_text[0]
        final_text, entities = final_text_with_entities[0]

564
565
        atol = 1e-4 if IS_ROCM_SYSTEM else 1e-5

Yih-Dar's avatar
Yih-Dar committed
566
567
568
569
570
571
572
573
574
        np.testing.assert_allclose(
            torch.concat(scores[1:4])[:3, :3].to("cpu").numpy(),
            np.array(
                [
                    [-1.5672581195831299, -5.007406711578369, 4.36448860168457],
                    [-2.147017002105713, -4.966302871704102, 4.592559337615967],
                    [-0.9352350831031799, -4.688288688659668, 6.240612983703613],
                ]
            ),
575
            atol=atol,
Yih-Dar's avatar
Yih-Dar committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        )
        np.testing.assert_allclose(
            torch.concat(scores[-3:])[-3:, -3:].to("cpu").numpy(),
            np.array(
                [
                    [2.9916205406188965, 2.481820583343506, 4.646594524383545],
                    [-2.8381078243255615, -2.9687185287475586, -2.6926779747009277],
                    [-2.8909168243408203, -3.2228589057922363, -1.7056822776794434],
                ]
            ),
            atol=1e-5,
        )

        # fmt: off
        EXPECTED_IDS = [
           [
                0, 64003, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
                29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
                55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 64004, 64012, 712, 1648, 9, 64007, 10, 43867, 64008,
                64009, 64057, 64876, 64010, 5950, 597, 32, 64007, 10, 646, 64008, 64009, 64018, 64924, 64010, 4, 2
           ]
        ]
        # fmt: on
        self.assertListEqual(generated_ids.to("cpu").numpy().tolist(), EXPECTED_IDS)

        EXPECTED_PROCESSED_TEXT = (
            "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> "
            "warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>."
        )
        self.assertEqual(processed_text, EXPECTED_PROCESSED_TEXT)

        self.assertEqual(final_text, "An image of a snowman warming himself by a fire.")

        EXPECTED_ENTITIES = [
            ("a snowman", (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]),
            ("a fire", (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)]),
        ]
        self.assertListEqual(entities, EXPECTED_ENTITIES)

        # test with the detail caption generation

        prompt = "<grounding>Describe this image in detail:"
        scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example(
            prompt, image, model, processor
        )
        processed_text = processed_text[0]
        final_text, entities = final_text_with_entities[0]

        np.testing.assert_allclose(
            torch.concat(scores[1:4])[:3, :3].to("cpu").numpy(),
            np.array(
                [
                    [-0.9093570113182068, -4.578373908996582, 5.96360969543457],
                    [2.452126979827881, -4.090598106384277, 8.738677024841309],
                    [-0.7624598741531372, -4.771658897399902, 6.576295852661133],
                ]
            ),
633
            atol=atol,
Yih-Dar's avatar
Yih-Dar committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        )
        np.testing.assert_allclose(
            torch.concat(scores[-3:])[-3:, -3:].to("cpu").numpy(),
            np.array(
                [
                    [-1.673659086227417, -2.162452220916748, -1.95430588722229],
                    [-2.006824493408203, -2.2038745880126953, -1.24686861038208],
                    [-3.2783470153808594, -2.814181089401245, -1.390632152557373],
                ]
            ),
            atol=1e-5,
        )

        # fmt: off
        EXPECTED_IDS_LONG = [
            [
                0, 64003, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
                29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
                55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 64004, 64012, 34645, 247, 38, 1648, 12, 3391, 55,
                24, 1648, 1338, 10, 43867, 1280, 32, 64007, 10, 30879, 64008, 64009, 64018, 65020, 64010, 12, 5, 1842,
                4, 71, 17, 1679, 64007, 10, 3958, 64008, 64009, 64061, 64263, 64010, 6, 64007, 15719, 64008, 64009,
                64253, 64617, 64010, 6, 8, 64007, 9626, 64008, 64009, 64413, 64545, 64010, 6, 23, 64007, 10, 4363,
                64008, 64009, 64623, 64885, 64010, 2255, 8, 64007, 10, 3486, 64008, 64009, 64809, 65036, 64010, 1560,
                2255, 4, 24, 43867, 1684, 7, 27, 3774, 5, 10356, 9, 5, 646, 6, 8, 22, 1684, 7, 30, 10, 2007, 8, 16239,
                4337, 4, 2
            ]
        ]
        # fmt: on
        self.assertListEqual(generated_ids.to("cpu").numpy().tolist(), EXPECTED_IDS_LONG)

        EXPECTED_PROCESSED_TEXT_LONG = (
            "<grounding> Describe this image in detail: The image features a snowman sitting by<phrase> a campfire"
            "</phrase><object><patch_index_0005><patch_index_1007></object> in the snow. He is wearing<phrase> a hat"
            "</phrase><object><patch_index_0048><patch_index_0250></object>,<phrase> scarf</phrase><object>"
            "<patch_index_0240><patch_index_0604></object>, and<phrase> gloves</phrase><object><patch_index_0400>"
            "<patch_index_0532></object>, with<phrase> a pot</phrase><object><patch_index_0610><patch_index_0872>"
            "</object> nearby and<phrase> a cup</phrase><object><patch_index_0796><patch_index_1023></object> placed "
            "nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy "
            "atmosphere."
        )
        self.assertEqual(processed_text, EXPECTED_PROCESSED_TEXT_LONG)

        EXPECTED_FINAL_TEXT_LONG = (
            "Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is "
            "wearing a hat, scarf, and gloves, with a pot nearby and a cup placed nearby. The snowman appears to be "
            "enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere."
        )
        self.assertEqual(final_text, EXPECTED_FINAL_TEXT_LONG)

        EXPECTED_ENTITIES_LONG = [
            ("a campfire", (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]),
            ("a hat", (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]),
            ("scarf", (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]),
            ("gloves", (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]),
            ("a pot", (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)]),
            ("a cup", (157, 162), [(0.890625, 0.765625, 0.984375, 0.984375)]),
        ]
        self.assertListEqual(entities, EXPECTED_ENTITIES_LONG)

    def test_snowman_image_captioning_batch(self):
        url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png"

        image = Image.open(requests.get(url, stream=True).raw)
        image.save("new_image.jpg")
        image = Image.open("new_image.jpg")

        model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224").to(torch_device)

702
        prompt = ["<grounding>Describe this image in detail:", "<grounding>An image of"]
Yih-Dar's avatar
Yih-Dar committed
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

        # left padding
        processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224", padding_side="left")

        scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example(
            prompt, [image] * len(prompt), model, processor
        )
        all_final_text = [x[0] for x in final_text_with_entities]
        all_entities = [x[1] for x in final_text_with_entities]

        # left padding gives identical results as non-padding
        EXPECTED_PROCESSED_TEXT_0 = (
            "<grounding> Describe this image in detail: The image features a snowman sitting by<phrase> a campfire"
            "</phrase><object><patch_index_0005><patch_index_1007></object> in the snow. He is wearing<phrase> a hat"
            "</phrase><object><patch_index_0048><patch_index_0250></object>,<phrase> scarf</phrase><object>"
            "<patch_index_0240><patch_index_0604></object>, and<phrase> gloves</phrase><object><patch_index_0400>"
            "<patch_index_0532></object>, with<phrase> a pot</phrase><object><patch_index_0610><patch_index_0872>"
            "</object> nearby and<phrase> a cup</phrase><object><patch_index_0796><patch_index_1023></object> placed "
            "nearby. The snowman appears to be enjoying the warmth of the fire, and it appears to have a warm and cozy "
            "atmosphere."
        )
724
725
726
727
        EXPECTED_PROCESSED_TEXT_1 = (
            "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> "
            "warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>."
        )
Yih-Dar's avatar
Yih-Dar committed
728
729
        self.assertListEqual(processed_text, [EXPECTED_PROCESSED_TEXT_0, EXPECTED_PROCESSED_TEXT_1])

730
        EXPECTED_FINAL_TEXT_0 = (
Yih-Dar's avatar
Yih-Dar committed
731
732
733
734
            "Describe this image in detail: The image features a snowman sitting by a campfire in the snow. He is "
            "wearing a hat, scarf, and gloves, with a pot nearby and a cup placed nearby. The snowman appears to be "
            "enjoying the warmth of the fire, and it appears to have a warm and cozy atmosphere."
        )
735
        EXPECTED_FINAL_TEXT_1 = "An image of a snowman warming himself by a fire."
Yih-Dar's avatar
Yih-Dar committed
736
737
738
739
740
741
742
743
744
745
        self.assertListEqual(all_final_text, [EXPECTED_FINAL_TEXT_0, EXPECTED_FINAL_TEXT_1])

        EXPECTED_ENTITIES_0 = [
            ("a campfire", (71, 81), [(0.171875, 0.015625, 0.484375, 0.984375)]),
            ("a hat", (109, 114), [(0.515625, 0.046875, 0.828125, 0.234375)]),
            ("scarf", (116, 121), [(0.515625, 0.234375, 0.890625, 0.578125)]),
            ("gloves", (127, 133), [(0.515625, 0.390625, 0.640625, 0.515625)]),
            ("a pot", (140, 145), [(0.078125, 0.609375, 0.265625, 0.859375)]),
            ("a cup", (157, 162), [(0.890625, 0.765625, 0.984375, 0.984375)]),
        ]
746
747
748
749
        EXPECTED_ENTITIES_1 = [
            ("a snowman", (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]),
            ("a fire", (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)]),
        ]
Yih-Dar's avatar
Yih-Dar committed
750
751
752
753
754
755
756
757
758
759
760
761
        self.assertListEqual(all_entities, [EXPECTED_ENTITIES_0, EXPECTED_ENTITIES_1])

        # right padding
        processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")

        scores, generated_ids, generated_text, processed_text, final_text_with_entities = self.run_example(
            prompt, [image] * len(prompt), model, processor
        )
        all_final_text = [x[0] for x in final_text_with_entities]
        all_entities = [x[1] for x in final_text_with_entities]

        # For right padding, only the non-padded sequences will give the same results as non-padding
762
763
764
        self.assertEqual(processed_text[0], EXPECTED_PROCESSED_TEXT_0)
        self.assertEqual(all_final_text[0], EXPECTED_FINAL_TEXT_0)
        self.assertListEqual(all_entities[0], EXPECTED_ENTITIES_0)