run_pplm_discrim_train.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#! /usr/bin/env python3
# coding=utf-8

# This code is licensed under a non-commercial license.

import argparse
import csv
import json
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import torch.optim
import torch.optim as optim
import torch.utils.data as data
from nltk.tokenize.treebank import TreebankWordDetokenizer
from torchtext import data as torchtext_data
from torchtext import datasets
piero's avatar
piero committed
21
from tqdm import tqdm, trange
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from transformers import GPT2Tokenizer, GPT2LMHeadModel

torch.manual_seed(0)
np.random.seed(0)
EPSILON = 1e-10
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had."
max_length_seq = 100


class ClassificationHead(torch.nn.Module):
    """Classification Head for  transformer encoders"""

    def __init__(self, class_size, embed_size):
        super(ClassificationHead, self).__init__()
        self.class_size = class_size
        self.embed_size = embed_size
        # self.mlp1 = torch.nn.Linear(embed_size, embed_size)
        # self.mlp2 = (torch.nn.Linear(embed_size, class_size))
        self.mlp = torch.nn.Linear(embed_size, class_size)

    def forward(self, hidden_state):
        # hidden_state = F.relu(self.mlp1(hidden_state))
        # hidden_state = self.mlp2(hidden_state)
        logits = self.mlp(hidden_state)
        return logits


class Discriminator(torch.nn.Module):
    """Transformer encoder followed by a Classification Head"""

    def __init__(
            self,
            class_size,
            pretrained_model="gpt2-medium",
w4nderlust's avatar
w4nderlust committed
57
58
            cached_mode=False,
            device='cpu'
59
60
61
62
63
64
65
66
67
68
    ):
        super(Discriminator, self).__init__()
        self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
        self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model)
        self.embed_size = self.encoder.transformer.config.hidden_size
        self.classifier_head = ClassificationHead(
            class_size=class_size,
            embed_size=self.embed_size
        )
        self.cached_mode = cached_mode
w4nderlust's avatar
w4nderlust committed
69
        self.device = device
70
71
72
73
74
75
76
77
78
79
80
81

    def get_classifier(self):
        return self.classifier_head

    def train_custom(self):
        for param in self.encoder.parameters():
            param.requires_grad = False
        self.classifier_head.train()

    def avg_representation(self, x):
        mask = x.ne(0).unsqueeze(2).repeat(
            1, 1, self.embed_size
w4nderlust's avatar
w4nderlust committed
82
        ).float().to(self.device).detach()
83
84
85
86
87
88
89
90
91
        hidden, _ = self.encoder.transformer(x)
        masked_hidden = hidden * mask
        avg_hidden = torch.sum(masked_hidden, dim=1) / (
                torch.sum(mask, dim=1).detach() + EPSILON
        )
        return avg_hidden

    def forward(self, x):
        if self.cached_mode:
w4nderlust's avatar
w4nderlust committed
92
            avg_hidden = x.to(self.device)
93
        else:
w4nderlust's avatar
w4nderlust committed
94
            avg_hidden = self.avg_representation(x.to(self.device))
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        logits = self.classifier_head(avg_hidden)
        probs = F.log_softmax(logits, dim=-1)

        return probs


class Dataset(data.Dataset):
    def __init__(self, X, y):
        """Reads source and target sequences from txt files."""
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, index):
        """Returns one data pair (source and target)."""
        data = {}
piero's avatar
piero committed
114
115
        data["X"] = self.X[index]
        data["y"] = self.y[index]
116
117
118
119
120
121
122
123
124
125
        return data


def collate_fn(data):
    def pad_sequences(sequences):
        lengths = [len(seq) for seq in sequences]

        padded_sequences = torch.zeros(
            len(sequences),
            max(lengths)
piero's avatar
piero committed
126
        ).long()  # padding value = 0
127
128
129
130
131
132
133
134
135
136
137

        for i, seq in enumerate(sequences):
            end = lengths[i]
            padded_sequences[i, :end] = seq[:end]

        return padded_sequences, lengths

    item_info = {}
    for key in data[0].keys():
        item_info[key] = [d[key] for d in data]

piero's avatar
piero committed
138
139
    x_batch, _ = pad_sequences(item_info["X"])
    y_batch = torch.tensor(item_info["y"], dtype=torch.long)
140
141
142
143
144
145
146
147
148

    return x_batch, y_batch


def cached_collate_fn(data):
    item_info = {}
    for key in data[0].keys():
        item_info[key] = [d[key] for d in data]

piero's avatar
piero committed
149
150
    x_batch = torch.cat(item_info["X"], 0)
    y_batch = torch.tensor(item_info["y"], dtype=torch.long)
151
152
153
154
155

    return x_batch, y_batch


def train_epoch(data_loader, discriminator, optimizer,
w4nderlust's avatar
w4nderlust committed
156
                epoch=0, log_interval=10, device='cpu'):
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    samples_so_far = 0
    discriminator.train_custom()
    for batch_idx, (input_t, target_t) in enumerate(data_loader):
        input_t, target_t = input_t.to(device), target_t.to(device)

        optimizer.zero_grad()

        output_t = discriminator(input_t)
        loss = F.nll_loss(output_t, target_t)
        loss.backward(retain_graph=True)
        optimizer.step()

        samples_so_far += len(input_t)

        if batch_idx % log_interval == 0:
            print(
piero's avatar
piero committed
173
                "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
174
175
176
177
178
179
180
                    epoch + 1,
                    samples_so_far, len(data_loader.dataset),
                    100 * samples_so_far / len(data_loader.dataset), loss.item()
                )
            )


w4nderlust's avatar
w4nderlust committed
181
def evaluate_performance(data_loader, discriminator, device='cpu'):
182
183
184
185
186
187
188
189
    discriminator.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for input_t, target_t in data_loader:
            input_t, target_t = input_t.to(device), target_t.to(device)
            output_t = discriminator(input_t)
            # sum up batch loss
piero's avatar
piero committed
190
            test_loss += F.nll_loss(output_t, target_t, reduction="sum").item()
191
192
193
194
195
196
197
            # get the index of the max log-probability
            pred_t = output_t.argmax(dim=1, keepdim=True)
            correct += pred_t.eq(target_t.view_as(pred_t)).sum().item()

    test_loss /= len(data_loader.dataset)

    print(
piero's avatar
piero committed
198
199
        "Performance on test set: "
        "Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
200
201
202
203
204
205
            test_loss, correct, len(data_loader.dataset),
            100. * correct / len(data_loader.dataset)
        )
    )


w4nderlust's avatar
w4nderlust committed
206
def predict(input_sentence, model, classes, cached=False, device='cpu'):
207
    input_t = model.tokenizer.encode(input_sentence)
208
    input_t = torch.tensor([input_t], dtype=torch.long, device=device)
209
210
211
212
    if cached:
        input_t = model.avg_representation(input_t)

    log_probs = model(input_t).data.cpu().numpy().flatten().tolist()
piero's avatar
piero committed
213
214
    print("Input sentence:", input_sentence)
    print("Predictions:", ", ".join(
215
216
217
218
219
        "{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in
        zip(classes, log_probs)
    ))


w4nderlust's avatar
w4nderlust committed
220
221
def get_cached_data_loader(dataset, batch_size, discriminator,
                           shuffle=False, device='cpu'):
222
223
224
225
226
227
    data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                              batch_size=batch_size,
                                              collate_fn=collate_fn)

    xs = []
    ys = []
piero's avatar
piero committed
228
    for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        with torch.no_grad():
            x = x.to(device)
            avg_rep = discriminator.avg_representation(x).cpu().detach()
            avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
            xs += avg_rep_list
            ys += y.cpu().numpy().tolist()

    data_loader = torch.utils.data.DataLoader(
        dataset=Dataset(xs, ys),
        batch_size=batch_size,
        shuffle=shuffle,
        collate_fn=cached_collate_fn)

    return data_loader


def train_discriminator(
piero's avatar
piero committed
246
        dataset, dataset_fp=None, pretrained_model="gpt2-medium",
247
        epochs=10, batch_size=64, log_interval=10,
piero's avatar
piero committed
248
249
        save_model=False, cached=False, no_cuda=False):
    device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
250

piero's avatar
piero committed
251
    print("Preprocessing {} dataset...".format(dataset))
252
253
    start = time.time()

piero's avatar
piero committed
254
    if dataset == "SST":
255
256
257
258
259
260
261
        idx2class = ["positive", "negative", "very positive", "very negative",
                     "neutral"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
262
263
            cached_mode=cached,
            device=device
264
265
266
267
268
269
270
271
272
273
274
275
276
        ).to(device)

        text = torchtext_data.Field()
        label = torchtext_data.Field(sequential=False)
        train_data, val_data, test_data = datasets.SST.splits(
            text,
            label,
            fine_grained=True,
            train_subtrees=True,
        )

        x = []
        y = []
piero's avatar
piero committed
277
        for i in trange(len(train_data), ascii=True):
278
279
280
281
282
283
284
285
286
287
288
            seq = TreebankWordDetokenizer().detokenize(
                vars(train_data[i])["text"]
            )
            seq = discriminator.tokenizer.encode(seq)
            seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
            x.append(seq)
            y.append(class2idx[vars(train_data[i])["label"]])
        train_dataset = Dataset(x, y)

        test_x = []
        test_y = []
piero's avatar
piero committed
289
        for i in trange(len(test_data), ascii=True):
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
            seq = TreebankWordDetokenizer().detokenize(
                vars(test_data[i])["text"]
            )
            seq = discriminator.tokenizer.encode(seq)
            seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
            test_x.append(seq)
            test_y.append(class2idx[vars(test_data[i])["label"]])
        test_dataset = Dataset(test_x, test_y)

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 2,
        }

piero's avatar
piero committed
307
    elif dataset == "clickbait":
308
309
310
311
312
313
        idx2class = ["non_clickbait", "clickbait"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
314
315
            cached_mode=cached,
            device=device
316
317
318
319
320
321
322
323
        ).to(device)

        with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
            data = []
            for i, line in enumerate(f):
                try:
                    data.append(eval(line))
                except:
piero's avatar
piero committed
324
                    print("Error evaluating line {}: {}".format(
325
326
327
328
329
                        i, line
                    ))
                    continue
        x = []
        y = []
piero's avatar
piero committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
            for i, line in enumerate(tqdm(f, ascii=True)):
                try:
                    d = eval(line)
                    seq = discriminator.tokenizer.encode(d["text"])

                    if len(seq) < max_length_seq:
                        seq = torch.tensor(
                            [50256] + seq, device=device, dtype=torch.long
                        )
                    else:
                        print("Line {} is longer than maximum length {}".format(
                            i, max_length_seq
                        ))
                        continue
                    x.append(seq)
                    y.append(d["label"])
                except:
                    print("Error evaluating / tokenizing"
                          " line {}, skipping it".format(i))
                    pass
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset, [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 1,
        }

piero's avatar
piero committed
367
    elif dataset == "toxic":
368
369
370
371
372
373
        idx2class = ["non_toxic", "toxic"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
374
375
            cached_mode=cached,
            device=device
376
377
        ).to(device)

piero's avatar
piero committed
378
379
        x = []
        y = []
380
        with open("datasets/toxic/toxic_train.txt") as f:
piero's avatar
piero committed
381
            for i, line in enumerate(tqdm(f, ascii=True)):
382
                try:
piero's avatar
piero committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
                    d = eval(line)
                    seq = discriminator.tokenizer.encode(d["text"])

                    if len(seq) < max_length_seq:
                        seq = torch.tensor(
                            [50256] + seq, device=device, dtype=torch.long
                        )
                    else:
                        print("Line {} is longer than maximum length {}".format(
                            i, max_length_seq
                        ))
                        continue
                    x.append(seq)
                    y.append(int(np.sum(d["label"]) > 0))
397
                except:
piero's avatar
piero committed
398
399
400
                    print("Error evaluating / tokenizing"
                          " line {}, skipping it".format(i))
                    pass
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset, [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 0,
        }

piero's avatar
piero committed
417
    else:  # if dataset == "generic":
418
419
420
421
        # This assumes the input dataset is a TSV with the following structure:
        # class \t text

        if dataset_fp is None:
piero's avatar
piero committed
422
423
            raise ValueError("When generic dataset is selected, "
                             "dataset_fp needs to be specified aswell.")
424
425
426

        classes = set()
        with open(dataset_fp) as f:
piero's avatar
piero committed
427
428
            csv_reader = csv.reader(f, delimiter="\t")
            for row in tqdm(csv_reader, ascii=True):
429
430
                if row:
                    classes.add(row[0])
431
432
433
434
435
436
437

        idx2class = sorted(classes)
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
438
439
            cached_mode=cached,
            device=device
440
441
442
443
444
        ).to(device)

        x = []
        y = []
        with open(dataset_fp) as f:
piero's avatar
piero committed
445
446
            csv_reader = csv.reader(f, delimiter="\t")
            for i, row in enumerate(tqdm(csv_reader, ascii=True)):
447
448
449
450
451
452
453
454
455
456
457
458
459
460
                if row:
                    label = row[0]
                    text = row[1]

                    try:
                        seq = discriminator.tokenizer.encode(text)
                        if (len(seq) < max_length_seq):
                            seq = torch.tensor(
                                [50256] + seq,
                                device=device,
                                dtype=torch.long
                            )

                        else:
piero's avatar
piero committed
461
462
463
464
                            print(
                                "Line {} is longer than maximum length {}".format(
                                    i, max_length_seq
                                ))
465
466
467
468
469
470
471
472
                            continue

                        x.append(seq)
                        y.append(class2idx[label])

                    except:
                        print("Error tokenizing line {}, skipping it".format(i))
                        pass
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset,
            [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 0,
        }

    end = time.time()
piero's avatar
piero committed
491
    print("Preprocessed {} data points".format(
492
493
494
495
496
        len(train_dataset) + len(test_dataset))
    )
    print("Data preprocessing took: {:.3f}s".format(end - start))

    if cached:
piero's avatar
piero committed
497
498
        print("Building representation cache...")

499
500
501
        start = time.time()

        train_loader = get_cached_data_loader(
w4nderlust's avatar
w4nderlust committed
502
503
            train_dataset, batch_size, discriminator,
            shuffle=True, device=device
504
505
506
        )

        test_loader = get_cached_data_loader(
w4nderlust's avatar
w4nderlust committed
507
            test_dataset, batch_size, discriminator, device=device
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        )

        end = time.time()
        print("Building representation cache took: {:.3f}s".format(end - start))

    else:
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=True,
                                                   collate_fn=collate_fn)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=batch_size,
                                                  collate_fn=collate_fn)

    if save_model:
        with open("{}_classifier_head_meta.json".format(dataset),
                  "w") as meta_file:
            json.dump(discriminator_meta, meta_file)

    optimizer = optim.Adam(discriminator.parameters(), lr=0.0001)

    for epoch in range(epochs):
        start = time.time()
piero's avatar
piero committed
531
        print("\nEpoch", epoch + 1)
532
533
534
535
536
537

        train_epoch(
            discriminator=discriminator,
            data_loader=train_loader,
            optimizer=optimizer,
            epoch=epoch,
w4nderlust's avatar
w4nderlust committed
538
539
            log_interval=log_interval,
            device=device
540
541
542
        )
        evaluate_performance(
            data_loader=test_loader,
w4nderlust's avatar
w4nderlust committed
543
544
            discriminator=discriminator,
            device=device
545
546
547
548
549
550
        )

        end = time.time()
        print("Epoch took: {:.3f}s".format(end - start))

        print("\nExample prediction")
w4nderlust's avatar
w4nderlust committed
551
552
        predict(example_sentence, discriminator, idx2class,
                cached=cached, device=device)
553
554
555
556

        if save_model:
            # torch.save(discriminator.state_dict(),
            #           "{}_discriminator_{}.pt".format(
557
            #               args.dataset, epoch + 1
558
559
            #               ))
            torch.save(discriminator.get_classifier().state_dict(),
560
561
                       "{}_classifier_head_epoch_{}.pt".format(dataset,
                                                               epoch + 1))
562
563


piero's avatar
piero committed
564
if __name__ == "__main__":
565
    parser = argparse.ArgumentParser(
piero's avatar
piero committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        description="Train a discriminator on top of GPT-2 representations")
    parser.add_argument("--dataset", type=str, default="SST",
                        choices=("SST", "clickbait", "toxic", "generic"),
                        help="dataset to train the discriminator on."
                             "In case of generic, the dataset is expected"
                             "to be a TSBV file with structure: class \\t text")
    parser.add_argument("--dataset_fp", type=str, default="",
                        help="File path of the dataset to use. "
                             "Needed only in case of generic datadset")
    parser.add_argument("--pretrained_model", type=str, default="gpt2-medium",
                        help="Pretrained model to use as encoder")
    parser.add_argument("--epochs", type=int, default=10, metavar="N",
                        help="Number of training epochs")
    parser.add_argument("--batch_size", type=int, default=64, metavar="N",
                        help="input batch size for training (default: 64)")
    parser.add_argument("--log_interval", type=int, default=10, metavar="N",
                        help="how many batches to wait before logging training status")
    parser.add_argument("--save_model", action="store_true",
                        help="whether to save the model")
    parser.add_argument("--cached", action="store_true",
                        help="whether to cache the input representations")
    parser.add_argument("--no_cuda", action="store_true",
                        help="use to turn off cuda")
589
590
591
    args = parser.parse_args()

    train_discriminator(**(vars(args)))