test_feature_extraction_whisper.py 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import itertools
import os
import random
import tempfile
import unittest

import numpy as np
24
from datasets import load_dataset
25

26
from transformers import WhisperFeatureExtractor
27
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torch_gpu
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from transformers.utils.import_utils import is_torch_available

from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin


if is_torch_available():
    import torch

global_rng = random.Random()


def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


class WhisperFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        min_seq_length=400,
        max_seq_length=2000,
        feature_size=10,
        hop_length=160,
        chunk_length=8,
        padding_value=0.0,
        sampling_rate=4_000,
65
        return_attention_mask=False,
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        do_normalize=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.min_seq_length = min_seq_length
        self.max_seq_length = max_seq_length
        self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
        self.padding_value = padding_value
        self.sampling_rate = sampling_rate
        self.return_attention_mask = return_attention_mask
        self.do_normalize = do_normalize
        self.feature_size = feature_size
        self.chunk_length = chunk_length
        self.hop_length = hop_length

    def prepare_feat_extract_dict(self):
        return {
            "feature_size": self.feature_size,
            "hop_length": self.hop_length,
            "chunk_length": self.chunk_length,
            "padding_value": self.padding_value,
            "sampling_rate": self.sampling_rate,
            "return_attention_mask": self.return_attention_mask,
            "do_normalize": self.do_normalize,
        }

    def prepare_inputs_for_common(self, equal_length=False, numpify=False):
        def _flatten(list_of_lists):
            return list(itertools.chain(*list_of_lists))

        if equal_length:
            speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
        else:
            # make sure that inputs increase in size
            speech_inputs = [
                floats_list((x, self.feature_size))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]
        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]
        return speech_inputs


class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
110
    feature_extraction_class = WhisperFeatureExtractor
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    def setUp(self):
        self.feat_extract_tester = WhisperFeatureExtractionTester(self)

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        dict_first = feat_extract_first.to_dict()
        dict_second = feat_extract_second.to_dict()
125
126
        mel_1 = feat_extract_first.mel_filters
        mel_2 = feat_extract_second.mel_filters
127
128
129
130
131
132
133
134
135
136
137
138
139
        self.assertTrue(np.allclose(mel_1, mel_2))
        self.assertEqual(dict_first, dict_second)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        dict_first = feat_extract_first.to_dict()
        dict_second = feat_extract_second.to_dict()
140
141
        mel_1 = feat_extract_first.mel_filters
        mel_2 = feat_extract_second.mel_filters
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        self.assertTrue(np.allclose(mel_1, mel_2))
        self.assertEqual(dict_first, dict_second)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 800, 1000, and 1200
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test feature size
        input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
        self.assertTrue(input_features.ndim == 3)
        self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames)
        self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size)

        # Test not batched input
        encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

169
170
171
172
173
174
175
176
        # Test 2-D numpy arrays are batched.
        speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
        np_speech_inputs = np.asarray(speech_inputs)
        encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

177
178
179
180
181
182
183
184
185
186
187
188
        # Test truncation required
        speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs]
        np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated]

        encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
        encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

189
    @require_torch
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def test_double_precision_pad(self):
        import torch

        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
        py_speech_inputs = np_speech_inputs.tolist()

        for inputs in [py_speech_inputs, np_speech_inputs]:
            np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
            self.assertTrue(np_processed.input_features.dtype == np.float32)
            pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
            self.assertTrue(pt_processed.input_features.dtype == torch.float32)

    def _load_datasamples(self, num_samples):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

210
    @require_torch_gpu
211
212
    @require_torch
    def test_torch_integration(self):
213
214
215
216
217
218
219
220
221
222
223
224
        # fmt: off
        EXPECTED_INPUT_FEATURES = torch.tensor(
            [
                0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
                0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
                0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
                -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
            ]
        )
        # fmt: on

        input_speech = self._load_datasamples(1)
225
226
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="pt").input_features
227

228
        self.assertEqual(input_features.shape, (1, 80, 3000))
229
        self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    @unittest.mock.patch("transformers.models.whisper.feature_extraction_whisper.is_torch_available", lambda: False)
    def test_numpy_integration(self):
        # fmt: off
        EXPECTED_INPUT_FEATURES = np.array(
            [
                0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
                0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
                0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
                -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
            ]
        )
        # fmt: on

        input_speech = self._load_datasamples(1)
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="np").input_features
        self.assertEqual(input_features.shape, (1, 80, 3000))
        self.assertTrue(np.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))

250
251
252
253
254
255
256
257
    def test_zero_mean_unit_variance_normalization_trunc_np_longest(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        audio = self._load_datasamples(1)[0]
        audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535  # Rescale to [0, 65535] to show issue
        audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0]

        self.assertTrue(np.all(np.mean(audio) < 1e-3))
        self.assertTrue(np.all(np.abs(np.var(audio) - 1) < 1e-3))
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    @require_torch_gpu
    @require_torch
    def test_torch_integration_batch(self):
        # fmt: off
        EXPECTED_INPUT_FEATURES = torch.tensor(
            [
                [
                    0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
                    0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
                    0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
                    -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
                ],
                [
                    -0.4696, -0.0751, 0.0276, -0.0312, -0.0540, -0.0383, 0.1295, 0.0568,
                    -0.2071, -0.0548, 0.0389, -0.0316, -0.2346, -0.1068, -0.0322, 0.0475,
                    -0.1709, -0.0041, 0.0872, 0.0537, 0.0075, -0.0392, 0.0371, 0.0189,
                    -0.1522, -0.0270, 0.0744, 0.0738, -0.0245, -0.0667
                ],
                [
                    -0.2337, -0.0060, -0.0063, -0.2353, -0.0431, 0.1102, -0.1492, -0.0292,
                     0.0787, -0.0608, 0.0143, 0.0582, 0.0072, 0.0101, -0.0444, -0.1701,
                     -0.0064, -0.0027, -0.0826, -0.0730, -0.0099, -0.0762, -0.0170, 0.0446,
                     -0.1153, 0.0960, -0.0361, 0.0652, 0.1207, 0.0277
                ]
            ]
        )
        # fmt: on

        input_speech = self._load_datasamples(3)
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="pt").input_features
        self.assertEqual(input_features.shape, (3, 80, 3000))
        self.assertTrue(torch.allclose(input_features[:, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))