test_modeling_t5.py 80 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import copy
18
19
import os
import pickle
20
import tempfile
21
22
import unittest

23
from transformers import T5Config, is_torch_available
24
from transformers.models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
25
26
27
28
29
30
31
32
from transformers.testing_utils import (
    require_accelerate,
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    slow,
    torch_device,
)
33
from transformers.utils import cached_property, is_torch_fx_available
thomwolf's avatar
thomwolf committed
34

35
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
36
from ...test_configuration_common import ConfigTester
37
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor
38
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
39

Aymeric Augustin's avatar
Aymeric Augustin committed
40

41
42
43
44
if is_torch_fx_available():
    from transformers.utils.fx import symbolic_trace


thomwolf's avatar
thomwolf committed
45
if is_torch_available():
46
    import torch
47

48
49
50
51
52
    from transformers import (
        AutoTokenizer,
        ByT5Tokenizer,
        T5EncoderModel,
        T5ForConditionalGeneration,
53
        T5ForQuestionAnswering,
54
        T5ForSequenceClassification,
55
        T5ForTokenClassification,
56
57
58
        T5Model,
        T5Tokenizer,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
60
61


62
class T5ModelTester:
Ola Piktus's avatar
Ola Piktus committed
63
64
65
66
67
68
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
69
        decoder_seq_length=7,
Ola Piktus's avatar
Ola Piktus committed
70
71
72
73
74
        # For common tests
        is_training=True,
        use_attention_mask=True,
        use_labels=True,
        hidden_size=32,
75
        num_hidden_layers=2,
Ola Piktus's avatar
Ola Piktus committed
76
77
78
79
80
81
82
83
84
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=8,
        dropout_rate=0.1,
        initializer_factor=0.002,
        eos_token_id=1,
        pad_token_id=0,
        decoder_start_token_id=0,
        scope=None,
85
        decoder_layers=None,
Ola Piktus's avatar
Ola Piktus committed
86
    ):
87
        self.parent = parent
Ola Piktus's avatar
Ola Piktus committed
88
89
90
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        self.decoder_seq_length = decoder_seq_length
91
92
        # For common tests
        self.seq_length = self.decoder_seq_length
Ola Piktus's avatar
Ola Piktus committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
107
        self.scope = None
108
        self.decoder_layers = decoder_layers
109

110
111
112
    def get_large_model_config(self):
        return T5Config.from_pretrained("t5-base")

113
    def prepare_config_and_inputs(self):
114
115
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size).clamp(2)
        input_ids[:, -1] = self.eos_token_id  # Eos Token
116
117
118
119
120
121
122
123
124
125
126
127
        decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        decoder_attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
            decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

128
129
130
131
132
133
134
135
136
137
138
        config = self.get_config()

        return (
            config,
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        )

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def get_pipeline_config(self):
        return T5Config(
            vocab_size=166,  # t5 forces 100 extra tokens
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

157
158
    def get_config(self):
        return T5Config(
159
160
161
162
163
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
164
            num_decoder_layers=self.decoder_layers,
165
166
167
168
169
170
171
172
173
174
175
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def check_prepare_lm_labels_via_shift_left(
Lysandre's avatar
Lysandre committed
176
177
178
179
180
181
182
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    ):
        model = T5Model(config=config)
        model.to(torch_device)
        model.eval()

        # make sure that lm_labels are correctly padded from the right
        lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)

        # add casaul pad token mask
        triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
        lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
        decoder_input_ids = model._shift_right(lm_labels)

        for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
            # first item
            self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
            if i < decoder_input_ids_slice.shape[-1]:
                if i < decoder_input_ids.shape[-1] - 1:
                    # items before diagonal
                    self.parent.assertListEqual(
                        decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
                    )
                # pad items after diagonal
                if i < decoder_input_ids.shape[-1] - 2:
                    self.parent.assertListEqual(
                        decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
                    )
            else:
                # all items after square
                self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())

214
    def create_and_check_model(
Lysandre's avatar
Lysandre committed
215
216
217
218
219
220
221
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
222
223
224
225
    ):
        model = T5Model(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
226
        result = model(
227
228
229
230
231
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
232
        result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
233
        decoder_output = result.last_hidden_state
234
        decoder_past = result.past_key_values
235
        encoder_output = result.encoder_last_hidden_state
Sylvain Gugger's avatar
Sylvain Gugger committed
236

237
238
        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
        self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
239
240
241
242
        # There should be `num_layers` key value embeddings stored in decoder_past
        self.parent.assertEqual(len(decoder_past), config.num_layers)
        # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
        self.parent.assertEqual(len(decoder_past[0]), 4)
243

244
    def create_and_check_with_lm_head(
Lysandre's avatar
Lysandre committed
245
246
247
248
249
250
251
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
252
    ):
253
        model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
254
255
256
257
258
259
260
        outputs = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            labels=lm_labels,
        )
        self.parent.assertEqual(len(outputs), 4)
Sylvain Gugger's avatar
Sylvain Gugger committed
261
262
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
        self.parent.assertEqual(outputs["loss"].size(), ())
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    def create_and_check_with_sequence_classification_head(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        labels = torch.tensor([1] * self.batch_size, dtype=torch.long, device=torch_device)
        model = T5ForSequenceClassification(config=config).to(torch_device).eval()
        outputs = model(
            input_ids=input_ids,
            decoder_input_ids=input_ids,
            labels=labels,
        )
        # self.parent.assertEqual(len(outputs), 4)
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, config.num_labels))
        self.parent.assertEqual(outputs["loss"].size(), ())

284
    def create_and_check_decoder_model_past(
Lysandre's avatar
Lysandre committed
285
286
287
288
289
290
291
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
292
    ):
293
        model = T5Model(config=config).get_decoder().to(torch_device).eval()
294
        # first forward pass
295
296
297
298
299
300
301
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

302
        output, past_key_values = outputs.to_tuple()
303
304
305
306
307
308
309

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
310
        output_from_no_past = model(next_input_ids)["last_hidden_state"]
311
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
312
313
314
315
316
317
318
319
320

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

321
    def create_and_check_decoder_model_attention_mask_past(
Lysandre's avatar
Lysandre committed
322
323
324
325
326
327
328
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
329
330
331
332
333
334
335
336
337
338
339
340
    ):
        model = T5Model(config=config).get_decoder()
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
341
        output, past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True).to_tuple()
342
343
344
345
346
347
348
349
350
351
352
353

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
Lysandre's avatar
Lysandre committed
354
355
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
356
357
358
        )

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
359
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
360
        output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
Sylvain Gugger's avatar
Sylvain Gugger committed
361
362
            "last_hidden_state"
        ]
363
364
365
366
367
368
369
370
371

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

372
373
374
375
376
377
378
379
380
381
382
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = T5Model(config=config).get_decoder().to(torch_device).eval()
        # first forward pass
383
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
384
385
386
387
388

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
389
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
390
391
392

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
393
        next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1)
394

395
396
397
398
        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]
399
400
401
402
403
404
405
406
407
408
409
410

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_generate_with_past_key_values(
Lysandre's avatar
Lysandre committed
411
412
413
414
415
416
417
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
418
    ):
419
        model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
420
421
422
423
424
425
426
427
        torch.manual_seed(0)
        output_without_past_cache = model.generate(
            input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
        )
        torch.manual_seed(0)
        output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
        self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))

428
    def create_and_check_model_fp16_forward(
Lysandre's avatar
Lysandre committed
429
430
431
432
433
434
435
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
436
    ):
437
        model = T5Model(config=config).to(torch_device).half().eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
438
        output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"]
439
440
        self.parent.assertFalse(torch.isnan(output).any().item())

441
    def create_and_check_encoder_decoder_shared_weights(
Lysandre's avatar
Lysandre committed
442
443
444
445
446
447
448
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    ):
        for model_class in [T5Model, T5ForConditionalGeneration]:
            torch.manual_seed(0)
            model = model_class(config=config).to(torch_device).eval()
            # load state dict copies weights but does not tie them
            model.encoder.load_state_dict(model.decoder.state_dict(), strict=False)

            torch.manual_seed(0)
            tied_config = copy.deepcopy(config)
            tied_config.tie_encoder_decoder = True
            tied_model = model_class(config=tied_config).to(torch_device).eval()

            model_result = model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )

            tied_model_result = tied_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )

            # check that models has less parameters
            self.parent.assertLess(
                sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
            )
            random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

            # check that outputs are equal
            self.parent.assertTrue(
                torch.allclose(
                    model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
                )
            )

            # check that outputs after saving and loading are equal
            with tempfile.TemporaryDirectory() as tmpdirname:
                tied_model.save_pretrained(tmpdirname)
                tied_model = model_class.from_pretrained(tmpdirname)
                tied_model.to(torch_device)
                tied_model.eval()

                # check that models has less parameters
                self.parent.assertLess(
                    sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
                )
                random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

                tied_model_result = tied_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )

                # check that outputs are equal
                self.parent.assertTrue(
                    torch.allclose(
                        model_result[0][0, :, random_slice_idx],
                        tied_model_result[0][0, :, random_slice_idx],
                        atol=1e-4,
                    )
                )

517
518
519
520
521
522
523
524
525
526
527
528
529
530
    def check_resize_embeddings_t5_v1_1(
        self,
        config,
    ):
        prev_vocab_size = config.vocab_size

        config.tie_word_embeddings = False
        model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
        model.resize_token_embeddings(prev_vocab_size - 10)

        self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10)
        self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10)
        self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10)

531
532
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
Lysandre's avatar
Lysandre committed
533
534
535
536
537
538
539
540
        (
            config,
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        ) = config_and_inputs
541
542
543
544
545
546
547
548
549
550
551

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "use_cache": False,
        }
        return config, inputs_dict


thomwolf's avatar
thomwolf committed
552
@require_torch
553
class T5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
554
555
556
557
558
    all_model_classes = (
        (T5Model, T5ForConditionalGeneration, T5ForSequenceClassification, T5ForQuestionAnswering)
        if is_torch_available()
        else ()
    )
559
    all_generative_model_classes = (T5ForConditionalGeneration,) if is_torch_available() else ()
560
561
562
563
    pipeline_model_mapping = (
        {
            "conversational": T5ForConditionalGeneration,
            "feature-extraction": T5Model,
564
            "question-answering": T5ForQuestionAnswering,
565
            "summarization": T5ForConditionalGeneration,
566
            "text-classification": T5ForSequenceClassification,
567
            "text2text-generation": T5ForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
568
            "translation": T5ForConditionalGeneration,
569
            "zero-shot": T5ForSequenceClassification,
570
571
572
573
        }
        if is_torch_available()
        else {}
    )
574
    all_parallelizable_model_classes = (T5Model, T5ForConditionalGeneration) if is_torch_available() else ()
575
    fx_compatible = True
thomwolf's avatar
thomwolf committed
576
    test_pruning = False
577
    test_resize_embeddings = True
578
    test_model_parallel = True
thomwolf's avatar
thomwolf committed
579
    is_encoder_decoder = True
580
581
    # The small T5 model needs higher percentages for CPU/MP tests
    model_split_percents = [0.8, 0.9]
thomwolf's avatar
thomwolf committed
582
583

    def setUp(self):
584
        self.model_tester = T5ModelTester(self)
thomwolf's avatar
thomwolf committed
585
586
        self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)

587
588
589
    # `QAPipelineTests` is not working well with slow tokenizers (for some models) and we don't want to touch the file
    # `src/transformers/data/processors/squad.py` (where this test fails for this model)
    def is_pipeline_test_to_skip(
590
        self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, processor_name
591
    ):
592
593
594
        if tokenizer_name is None:
            return True
        if pipeline_test_case_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
595
596
597
598
            return True

        return False

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

        for model_class in self.all_model_classes:
            if model_class.__name__ == "T5ForSequenceClassification":
                continue
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
                        "decoder_input_ids",
                        "input_features",
                        "input_ids",
                        "input_values",
                    ]
                    if labels is not None:
                        input_names.append("labels")

                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = list(filtered_inputs.keys())

                    model_output = model(**filtered_inputs)

                    traced_model = symbolic_trace(model, input_names)
                    traced_output = traced_model(**filtered_inputs)
                else:
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
                    ]

                    labels = inputs.get("labels", None)
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
                    if labels is not None:
                        input_names.append("labels")
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")

                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = list(filtered_inputs.keys())

                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
                    ):
                        model.config.problem_type = "single_label_classification"

                    traced_model = symbolic_trace(model, input_names)
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)

            except Exception as e:
                self.fail(f"Couldn't trace module: {e}")

            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
            num_outputs = len(model_output)

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )

            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

thomwolf's avatar
thomwolf committed
719
720
721
    def test_config(self):
        self.config_tester.run_common_tests()

722
723
724
725
    def test_shift_right(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs)

726
    def test_model(self):
thomwolf's avatar
thomwolf committed
727
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
728
        self.model_tester.create_and_check_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
729

Patrick von Platen's avatar
Patrick von Platen committed
730
731
732
733
734
735
736
737
    def test_model_v1_1(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        # check that gated gelu feed forward and different word embeddings work
        config = config_and_inputs[0]
        config.tie_word_embeddings = False
        config.feed_forward_proj = "gated-gelu"
        self.model_tester.create_and_check_model(config, *config_and_inputs[1:])

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
    # T5ForSequenceClassification does not support inputs_embeds
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in (T5Model, T5ForConditionalGeneration, T5ForQuestionAnswering):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]

DanielHesslow's avatar
DanielHesslow committed
768
769
770
771
772
773
    def test_config_and_model_silu_gated(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config = config_and_inputs[0]
        config.feed_forward_proj = "gated-silu"
        self.model_tester.create_and_check_model(*config_and_inputs)

thomwolf's avatar
thomwolf committed
774
775
    def test_with_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
776
        self.model_tester.create_and_check_with_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
777

778
779
780
781
    def test_with_sequence_classification_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs)

782
    def test_decoder_model_past(self):
783
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
784
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
785

786
    def test_decoder_model_past_with_attn_mask(self):
787
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
788
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
    def test_decoder_model_past_with_3d_attn_mask(self):
        (
            config,
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        ) = self.model_tester.prepare_config_and_inputs()

        attention_mask = ids_tensor(
            [self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length],
            vocab_size=2,
        )
        decoder_attention_mask = ids_tensor(
            [self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length],
            vocab_size=2,
        )

        self.model_tester.create_and_check_decoder_model_attention_mask_past(
            config,
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        )

818
819
820
821
822
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_generate_with_past_key_values(self):
823
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
824
        self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs)
825
826
827
828

    def test_encoder_decoder_shared_weights(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs)
829

830
    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
831
    def test_model_fp16_forward(self):
832
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
833
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
834

835
836
837
838
    def test_v1_1_resize_embeddings(self):
        config = self.model_tester.prepare_config_and_inputs()[0]
        self.model_tester.check_resize_embeddings_t5_v1_1(config)

thomwolf's avatar
thomwolf committed
839
    @slow
thomwolf's avatar
thomwolf committed
840
    def test_model_from_pretrained(self):
841
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
842
            model = T5Model.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
843
            self.assertIsNotNone(model)
844

845
    @unittest.skip("Test has a segmentation fault on torch 1.8.0")
Abel's avatar
Abel committed
846
847
    def test_export_to_onnx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
848
        model = T5Model(config_and_inputs[0]).to(torch_device)
Abel's avatar
Abel committed
849
850
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
Lysandre's avatar
Lysandre committed
851
                model,
852
                (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
Lysandre's avatar
Lysandre committed
853
854
855
                f"{tmpdirname}/t5_test.onnx",
                export_params=True,
                opset_version=9,
856
                input_names=["input_ids", "decoder_input_ids"],
Abel's avatar
Abel committed
857
858
            )

859
860
861
862
863
    def test_generate_with_head_masking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config = config_and_inputs[0]
        max_length = config_and_inputs[1].shape[-1] + 3
864
865
        model = T5ForConditionalGeneration(config).eval()
        model.to(torch_device)
866
867

        head_masking = {
868
869
870
            "head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device),
            "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
            "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
871
872
873
874
875
876
        }

        for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
            head_masks = {name: mask}
            # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
            if name == "head_mask":
877
878
879
                head_masks["decoder_head_mask"] = torch.ones(
                    config.num_decoder_layers, config.num_heads, device=torch_device
                )
880
881
882
883
884
885
886
887
888
889
890
891
892

            out = model.generate(
                config_and_inputs[1],
                num_beams=1,
                max_length=max_length,
                output_attentions=True,
                return_dict_in_generate=True,
                **head_masks,
            )
            # We check the state of decoder_attentions and cross_attentions just from the last step
            attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
            self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

Sylvain Gugger's avatar
Sylvain Gugger committed
893
894
895
896
    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
    def test_disk_offload(self):
        pass

Matt's avatar
Matt committed
897
898
899
900
    @unittest.skip("Does not support conversations.")
    def test_pipeline_conversational(self):
        pass

901

902
903
904
905
906
907
908
909
910
911
class T5EncoderOnlyModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
        # For common tests
        use_attention_mask=True,
        hidden_size=32,
912
        num_hidden_layers=2,
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=8,
        is_training=False,
        dropout_rate=0.1,
        initializer_factor=0.002,
        is_encoder_decoder=False,
        eos_token_id=1,
        pad_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        # For common tests
        self.seq_length = self.encoder_seq_length
        self.use_attention_mask = use_attention_mask
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.is_encoder_decoder = is_encoder_decoder
        self.scope = None
        self.is_training = is_training

944
945
946
    def get_large_model_config(self):
        return T5Config.from_pretrained("t5-base")

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)

        config = T5Config(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            is_encoder_decoder=self.is_encoder_decoder,
        )

        return (
            config,
            input_ids,
            attention_mask,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        attention_mask,
    ):
        model = T5EncoderModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            attention_mask=attention_mask,
        )
        result = model(input_ids=input_ids)
        encoder_output = result.last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))

    def create_and_check_model_fp16_forward(
        self,
        config,
        input_ids,
        attention_mask,
    ):
        model = T5EncoderModel(config=config).to(torch_device).half().eval()
        output = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
        self.parent.assertFalse(torch.isnan(output).any().item())

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
    def create_and_check_with_token_classification_head(
        self,
        config,
        input_ids,
        attention_mask,
    ):
        labels = torch.tensor([1] * self.seq_length * self.batch_size, dtype=torch.long, device=torch_device)
        model = T5ForTokenClassification(config=config).to(torch_device).eval()
        outputs = model(
            input_ids=input_ids,
            labels=labels,
            attention_mask=attention_mask,
        )
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.seq_length, config.num_labels))
        self.parent.assertEqual(outputs["loss"].size(), ())

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


1035
1036
class T5EncoderOnlyModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (T5EncoderModel, T5ForTokenClassification) if is_torch_available() else ()
1037
1038
    test_pruning = False
    test_resize_embeddings = False
1039
    test_model_parallel = True
1040
1041
1042
1043
1044
1045
1046
    pipeline_model_mapping = (
        {
            "token-classification": T5ForTokenClassification,
        }
        if is_torch_available()
        else {}
    )
1047
    all_parallelizable_model_classes = (T5EncoderModel,) if is_torch_available() else ()
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

    def setUp(self):
        self.model_tester = T5EncoderOnlyModelTester(self)
        self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)

1065
1066
1067
1068
    def test_with_token_classification_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_with_token_classification_head(*config_and_inputs)

1069

1070
1071
1072
1073
def use_task_specific_params(model, task):
    model.config.update(model.config.task_specific_params[task])


1074
1075
1076
1077
1078
1079
1080
1081
1082
@require_torch
@require_accelerate
@require_tokenizers
@slow
class T5ModelFp16Tests(unittest.TestCase):
    def test_fp16_fp32_conversion(self):
        r"""
        A test to check whether the argument `keep_in_fp32_modules` correctly does its job
        """
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        orig_import = __import__
        accelerate_mock = unittest.mock.Mock()

        # mock import of accelerate
        def import_accelerate_mock(name, *args, **kwargs):
            if name == "accelerate":
                if accelerate_available:
                    return accelerate_mock
                else:
                    raise ImportError
            return orig_import(name, *args, **kwargs)

1095
        # Load without using `accelerate`
1096
1097
        with unittest.mock.patch("builtins.__import__", side_effect=import_accelerate_mock):
            accelerate_available = False
1098

1099
1100
1101
1102
1103
1104
1105
1106
            model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.float16)
            self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
            self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16)

            # Load without in bf16
            model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.bfloat16)
            self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16)
            self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16)
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

        # Load using `accelerate` in bf16
        model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.bfloat16, device_map="auto")
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16)
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16)

        # Load using `accelerate` in bf16
        model = T5ForConditionalGeneration.from_pretrained(
            "t5-small", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True
        )
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.bfloat16)
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.bfloat16)

        # Load without using `accelerate`
        model = T5ForConditionalGeneration.from_pretrained(
            "t5-small", torch_dtype=torch.float16, low_cpu_mem_usage=True
        )
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16)

        # Load using `accelerate`
        model = T5ForConditionalGeneration.from_pretrained("t5-small", torch_dtype=torch.float16, device_map="auto")
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wi.weight.dtype == torch.float16)


1133
@require_torch
1134
1135
@require_sentencepiece
@require_tokenizers
1136
class T5ModelIntegrationTests(unittest.TestCase):
1137
1138
1139
1140
1141
1142
1143
1144
    @cached_property
    def model(self):
        return T5ForConditionalGeneration.from_pretrained("t5-base").to(torch_device)

    @cached_property
    def tokenizer(self):
        return T5Tokenizer.from_pretrained("t5-base")

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    @slow
    def test_torch_quant(self):
        r"""
        Test that a simple `torch.quantization.quantize_dynamic` call works on a T5 model.
        """
        model_name = "google/flan-t5-small"
        tokenizer = T5Tokenizer.from_pretrained(model_name)
        model = T5ForConditionalGeneration.from_pretrained(model_name)
        model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
        input_text = "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?"
        input_ids = tokenizer(input_text, return_tensors="pt").input_ids
        _ = model.generate(input_ids)

Vasudev Gupta's avatar
Vasudev Gupta committed
1158
1159
1160
1161
1162
1163
1164
1165
    @slow
    def test_small_generation(self):
        model = T5ForConditionalGeneration.from_pretrained("t5-small").to(torch_device)
        model.config.max_length = 8
        model.config.num_beams = 1
        model.config.do_sample = False
        tokenizer = T5Tokenizer.from_pretrained("t5-small")

Lysandre Debut's avatar
Lysandre Debut committed
1166
        input_ids = tokenizer("summarize: Hello there", return_tensors="pt").input_ids.to(torch_device)
Vasudev Gupta's avatar
Vasudev Gupta committed
1167
1168
1169
1170
1171
1172

        sequences = model.generate(input_ids)

        output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
        self.assertTrue(output_str == "Hello there!")

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    @slow
    def test_small_integration_test(self):
        """
        For comparision run:
        >>> import t5  # pip install t5==0.7.1
        >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary

        >>> path_to_mtf_small_t5_checkpoint = '<fill_in>'
        >>> path_to_mtf_small_spm_model_path = '<fill_in>'
        >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None)
        >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
        >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
        """

Patrick von Platen's avatar
Patrick von Platen committed
1187
        model = T5ForConditionalGeneration.from_pretrained("t5-small").to(torch_device)
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
        tokenizer = T5Tokenizer.from_pretrained("t5-small")

        input_ids = tokenizer("Hello there", return_tensors="pt").input_ids
        labels = tokenizer("Hi I am", return_tensors="pt").input_ids

        loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss
        mtf_score = -(labels.shape[-1] * loss.item())

        EXPECTED_SCORE = -19.0845
        self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)

Patrick von Platen's avatar
Patrick von Platen committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    @slow
    def test_small_v1_1_integration_test(self):
        """
        For comparision run:
        >>> import t5  # pip install t5==0.7.1
        >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary

        >>> path_to_mtf_small_t5_v1_1_checkpoint = '<fill_in>'
        >>> path_to_mtf_small_spm_model_path = '<fill_in>'
        >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1_1_checkpoint, batch_size=1, tpu=None)
        >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
        >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
        """

        model = T5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small").to(torch_device)
        tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small")

        input_ids = tokenizer("Hello there", return_tensors="pt").input_ids
        labels = tokenizer("Hi I am", return_tensors="pt").input_ids

        loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss
        mtf_score = -(labels.shape[-1] * loss.item())

        EXPECTED_SCORE = -59.0293
        self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)

Patrick von Platen's avatar
Patrick von Platen committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
    @slow
    def test_small_byt5_integration_test(self):
        """
        For comparision run:
        >>> import t5  # pip install t5==0.9.1

        >>> path_to_byt5_small_checkpoint = '<fill_in>'
        >>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None)
        >>> vocab = t5.data.ByteVocabulary()
        >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
        """

        model = T5ForConditionalGeneration.from_pretrained("google/byt5-small").to(torch_device)
        tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")

        input_ids = tokenizer("Hello there", return_tensors="pt").input_ids
        labels = tokenizer("Hi I am", return_tensors="pt").input_ids

        loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss
        mtf_score = -(labels.shape[-1] * loss.item())

        EXPECTED_SCORE = -60.7397
        self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)

1249
1250
    @slow
    def test_summarization(self):
1251
1252
        model = self.model
        tok = self.tokenizer
1253

Sylvain Gugger's avatar
Sylvain Gugger committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
        FRANCE_ARTICLE = (  # @noqa
            "Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings"
            " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane."
            ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."'
            ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s'
            " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
            " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French"
            " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a"
            " phone at the wreckage site. The two publications described the supposed video, but did not post it on"
            " their websites. The publications said that they watched the video, which was found by a source close to"
            " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported."
            ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the'
            " cockpit door with a heavy object.  Towards the end, after a heavy shake, stronger than the others, the"
            ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,'
            " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said"
            " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman"
            " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the"
            ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,'
            ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be'
            " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by"
            " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so"
            " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could"
            ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin'
            ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match'
            ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
            ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something'
            " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the"
            ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline'
            " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the"
            " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the"
            ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of'
            ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school'
            " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in"
            " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent"
            " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and"
            " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%"
            ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was'
            " sharing the information and documents -- including training and medical records -- with public"
            " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the"
            " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the"
            " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash"
            " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late"
            " Tuesday that no visible human remains were left at the site but recovery teams would keep searching."
            " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all"
            " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
            " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said."
            " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew"
            " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with"
            " the flight school during his training were among several developments as investigators continued to"
            " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa"
            " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his"
            ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in'
            " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at"
            " some point before his aviation career and underwent psychotherapy before he got his pilot's license."
            " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the"
            " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to"
            " lose his pilot's license, a European government official briefed on the investigation told CNN on"
            ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being'
            " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that"
            " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would"
            " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had"
            " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded"
            " he had psychological issues, the European government official said. But no matter what details emerge"
            " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
            ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact'
            " that maybe they weren't going to keep doing their job and they're upset about that and so they're"
            ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to'
            " also take that rage and turn it outward on 149 other people who had nothing to do with the person's"
            ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight'
            " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura"
            " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine"
            " Amiel and Anna-Maja Rappard contributed to this report."
        )
        SHORTER_ARTICLE = (
            "(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
            " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
            " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
            " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
            ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
            ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
            " situation in Palestinian territories, paving the way for possible war crimes investigations against"
            " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
            " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
            " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
            ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
            ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
            ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
            " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
            ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
            " acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
            ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
            ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
            " immediately end their pressure, and countries that support universal acceptance of the court's treaty"
            ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
            " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
            ' decision to join a treaty to which over 100 countries around the world are members." In January, when'
            " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
            ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
            " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
            ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
            ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
            ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
            " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
            ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
            " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
            ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
            " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
            " will include alleged war crimes committed since June. The International Criminal Court was set up in"
            " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder"
            " and Faith Karimi contributed to this report."
        )
        IRAN_ARTICLE = (
            "(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran"
            " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively"
            " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger."
            " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli"
            " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a"
            " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since"
            " the announcement of the new framework will likely result in more heat than light. It will not be helped"
            " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ."
            " The most misleading assertion, despite universal rejection by experts, is that the negotiations'"
            " objective at the outset was the total elimination of any nuclear program in Iran. That is the position"
            " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it"
            " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has"
            " always been to structure an agreement or series of agreements so that Iran could not covertly develop a"
            " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded"
            " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by"
            " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another"
            " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite"
            " sharp accusations by some in the United States and its allies, Iran denies having such a program, and"
            " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's"
            " continued cooperation with International Atomic Energy Agency inspections is further evidence on this"
            " point, and we'll know even more about Iran's program in the coming months and years because of the deal."
            " In fact, the inspections provisions that are part of this agreement are designed to protect against any"
            " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that"
            " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter"
            " warning that a deal might be killed by Congress or a future president). This of course is not the case."
            " The talks were between Iran and the five permanent members of the U.N. Security Council (United States,"
            " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has"
            " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement"
            " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran"
            " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement"
            " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the"
            " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased"
            " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes"
            " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear"
            " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going"
            " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such"
            " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the"
            ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not'
            " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New"
            " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement"
            " with Iran will not be so balanced.  The restrictions and obligations in the final framework agreement"
            " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove"
            " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally"
            " some insist that any agreement must address Iranian missile programs, human rights violations or support"
            " for Hamas or Hezbollah.  As important as these issues are, and they must indeed be addressed, they are"
            " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran.  To include them in"
            " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it"
            " affects the security of our negotiating partners and allies, including Israel. Those judgments should be"
            " fact-based, not based on questionable assertions or dubious assumptions."
        )
        ARTICLE_SUBWAY = (
            "New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
            " year later, she got married again in Westchester County, but to a different man and without divorcing"
            " her first husband.  Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
            ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
            " once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
            ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
            ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
            " license application, according to court documents. Prosecutors said the marriages were part of an"
            " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
            " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
            " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
            " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
            " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.  All"
            " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
            " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
            " said the immigration scam involved some of her husbands, who filed for permanent residence status"
            " shortly after the marriages.  Any divorces happened only after such filings were approved. It was"
            " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
            " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
            ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
            " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
            " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
            " up to four years in prison.  Her next court appearance is scheduled for May 18."
        )
1441
1442

        expected_summaries = [
Sylvain Gugger's avatar
Sylvain Gugger committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
            'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a'
            " cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one"
            " magazine says .",
            "the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a"
            " preliminary examination into the situation in the occupied Palestinian territory . as members of the"
            " court, Palestinians may be subject to counter-charges as well .",
            "the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:"
            " the debate that has already begun since the announcement of the new framework will likely result in more"
            " heat than light . the deal would reduce Iran's low-enriched uranium stockpile, cut centrifuges and"
            " implement a rigorous inspection regime .",
            "prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two"
            ' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10'
            " times, with nine of her marriages occurring between 1999 and 2002 .",
1456
        ]
1457

1458
        use_task_specific_params(model, "summarization")
1459

1460
        dct = tok(
1461
            [model.config.prefix + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]],
1462
1463
            padding="max_length",
            truncation=True,
1464
            return_tensors="pt",
1465
        ).to(torch_device)
1466
1467
1468
        self.assertEqual(512, dct["input_ids"].shape[1])

        hypotheses_batch = model.generate(
1469
            **dct,
1470
1471
1472
1473
1474
1475
1476
1477
            num_beams=4,
            length_penalty=2.0,
            max_length=142,
            min_length=56,
            no_repeat_ngram_size=3,
            do_sample=False,
            early_stopping=True,
        )
1478

1479
        decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False)
1480
        self.assertListEqual(
Lysandre's avatar
Lysandre committed
1481
1482
            expected_summaries,
            decoded,
1483
1484
1485
1486
        )

    @slow
    def test_translation_en_to_de(self):
1487
1488
1489
        model = self.model
        tok = self.tokenizer
        use_task_specific_params(model, "translation_en_to_de")
1490

1491
        en_text = '"Luigi often said to me that he never wanted the brothers to end up in court", she wrote.'
1492
1493
1494
1495
        expected_translation = (
            '"Luigi sagte mir oft, dass er nie wollte, dass die Br眉der am Gericht sitzen", schrieb sie.'
        )

1496
        input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt")
1497
        input_ids = input_ids.to(torch_device)
1498
        output = model.generate(input_ids)
1499
1500
1501
1502
1503
        translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
        self.assertEqual(translation, expected_translation)

    @slow
    def test_translation_en_to_fr(self):
1504
        model = self.model  # t5-base
1505
1506
        tok = self.tokenizer
        use_task_specific_params(model, "translation_en_to_fr")
1507

Sylvain Gugger's avatar
Sylvain Gugger committed
1508
1509
1510
1511
        en_text = (
            ' This image section from an infrared recording by the Spitzer telescope shows a "family portrait" of'
            " countless generations of stars: the oldest stars are seen as blue dots. "
        )
1512

1513
        input_ids = tok.encode(model.config.prefix + en_text, return_tensors="pt")
1514
        input_ids = input_ids.to(torch_device)
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

        output = model.generate(
            input_ids=input_ids,
            num_beams=4,
            length_penalty=2.0,
            max_length=100,
            no_repeat_ngram_size=3,
            do_sample=False,
            early_stopping=True,
        )
        translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
1526
1527
1528
1529
1530
1531
1532
1533
1534
        new_truncated_translation = (
            "Cette section d'images provenant de l'enregistrement infrarouge effectu茅 par le t茅lescope Spitzer montre "
            "un "
            "芦 portrait familial 禄 de g茅n茅rations innombrables d鈥櫭﹖oiles : les plus anciennes sont observ茅es "
            "sous forme "
            "de points bleus."
        )

        self.assertEqual(translation, new_truncated_translation)
1535
1536
1537

    @slow
    def test_translation_en_to_ro(self):
1538
1539
1540
1541
        model = self.model
        tok = self.tokenizer
        use_task_specific_params(model, "translation_en_to_ro")
        en_text = "Taco Bell said it plans to add 2,000 locations in the US by 2022."
1542
1543
        expected_translation = "Taco Bell a declarat c膬 inten牛ioneaz膬 s膬 adauge 2 000 de loca牛ii 卯n SUA p芒n膬 卯n 2022."

1544
1545
        inputs = tok(model.config.prefix + en_text, return_tensors="pt").to(torch_device)
        output = model.generate(**inputs)
1546
1547
        translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
        self.assertEqual(translation, expected_translation)
1548

1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
    @slow
    def test_contrastive_search_t5(self):
        article = (
            " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
            " year later, she got married again in Westchester County, but to a different man and without divorcing"
            " her first husband.  Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
            ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
            " once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
            ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
            ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
            " license application, according to court documents. Prosecutors said the marriages were part of an"
            " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
            " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
            " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
            " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
            " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.  All"
            " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
            " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
            " said the immigration scam involved some of her husbands, who filed for permanent residence status"
            " shortly after the marriages.  Any divorces happened only after such filings were approved. It was"
            " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
            " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
            ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
            " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
            " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
            " up to four years in prison.  Her next court appearance is scheduled for May 18."
        )
        article = "summarize: " + article.strip()
        t5_tokenizer = AutoTokenizer.from_pretrained("flax-community/t5-base-cnn-dm")
        t5_model = T5ForConditionalGeneration.from_pretrained("flax-community/t5-base-cnn-dm").to(torch_device)
        input_ids = t5_tokenizer(
            article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt"
        ).input_ids.to(torch_device)

        outputs = t5_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64)
        generated_text = t5_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "Liana Barrientos has been married 10 times, nine of them in the Bronx. Her husbands filed for "
                "permanent residence after the marriages, prosecutors say."
            ],
        )

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

@require_torch
class TestAsymmetricT5(unittest.TestCase):
    def build_model_and_check_forward_pass(self, **kwargs):
        tester = T5ModelTester(self, **kwargs)
        config, *inputs = tester.prepare_config_and_inputs()
        (
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        ) = inputs
        model = T5ForConditionalGeneration(config=config).to(torch_device).eval()
        outputs = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            labels=lm_labels,
        )
        # outputs = model(*inputs)
        assert len(outputs) == 4
        assert outputs["logits"].size() == (tester.batch_size, tester.decoder_seq_length, tester.vocab_size)
        assert outputs["loss"].size() == ()
        return model

    def test_small_decoder(self):
        # num_hidden_layers is passed to T5Config as num_layers
        model = self.build_model_and_check_forward_pass(decoder_layers=1, num_hidden_layers=2)
        assert len(model.encoder.block) == 2
        assert len(model.decoder.block) == 1

    def test_defaulting_to_symmetry(self):
        # num_hidden_layers is passed to T5Config as num_layers
        model = self.build_model_and_check_forward_pass(num_hidden_layers=2)
        assert len(model.decoder.block) == len(model.encoder.block) == 2