test_tokenization_dpr.py 3.43 KB
Newer Older
Quentin Lhoest's avatar
Quentin Lhoest committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from transformers import (
Quentin Lhoest's avatar
Quentin Lhoest committed
17
18
19
20
21
22
23
24
    DPRContextEncoderTokenizer,
    DPRContextEncoderTokenizerFast,
    DPRQuestionEncoderTokenizer,
    DPRQuestionEncoderTokenizerFast,
    DPRReaderOutput,
    DPRReaderTokenizer,
    DPRReaderTokenizerFast,
)
25
from transformers.testing_utils import require_tokenizers, slow
Quentin Lhoest's avatar
Quentin Lhoest committed
26
27
from transformers.tokenization_utils_base import BatchEncoding

28
from ..bert.test_tokenization_bert import BertTokenizationTest
Quentin Lhoest's avatar
Quentin Lhoest committed
29
30


31
@require_tokenizers
Quentin Lhoest's avatar
Quentin Lhoest committed
32
33
class DPRContextEncoderTokenizationTest(BertTokenizationTest):
    tokenizer_class = DPRContextEncoderTokenizer
34
35
    rust_tokenizer_class = DPRContextEncoderTokenizerFast
    test_rust_tokenizer = True
Quentin Lhoest's avatar
Quentin Lhoest committed
36
37


38
@require_tokenizers
Quentin Lhoest's avatar
Quentin Lhoest committed
39
40
class DPRQuestionEncoderTokenizationTest(BertTokenizationTest):
    tokenizer_class = DPRQuestionEncoderTokenizer
41
42
    rust_tokenizer_class = DPRQuestionEncoderTokenizerFast
    test_rust_tokenizer = True
Quentin Lhoest's avatar
Quentin Lhoest committed
43
44


45
@require_tokenizers
Quentin Lhoest's avatar
Quentin Lhoest committed
46
47
class DPRReaderTokenizationTest(BertTokenizationTest):
    tokenizer_class = DPRReaderTokenizer
48
49
    rust_tokenizer_class = DPRReaderTokenizerFast
    test_rust_tokenizer = True
Quentin Lhoest's avatar
Quentin Lhoest committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    @slow
    def test_decode_best_spans(self):
        tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")

        text_1 = tokenizer.encode("question sequence", add_special_tokens=False)
        text_2 = tokenizer.encode("title sequence", add_special_tokens=False)
        text_3 = tokenizer.encode("text sequence " * 4, add_special_tokens=False)
        input_ids = [[101] + text_1 + [102] + text_2 + [102] + text_3]
        reader_input = BatchEncoding({"input_ids": input_ids})

        start_logits = [[0] * len(input_ids[0])]
        end_logits = [[0] * len(input_ids[0])]
        relevance_logits = [0]
        reader_output = DPRReaderOutput(start_logits, end_logits, relevance_logits)

        start_index, end_index = 8, 9
        start_logits[0][start_index] = 10
        end_logits[0][end_index] = 10
        predicted_spans = tokenizer.decode_best_spans(reader_input, reader_output)
        self.assertEqual(predicted_spans[0].start_index, start_index)
        self.assertEqual(predicted_spans[0].end_index, end_index)
        self.assertEqual(predicted_spans[0].doc_id, 0)

    @slow
    def test_call(self):
        tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")

        text_1 = tokenizer.encode("question sequence", add_special_tokens=False)
        text_2 = tokenizer.encode("title sequence", add_special_tokens=False)
        text_3 = tokenizer.encode("text sequence", add_special_tokens=False)
        expected_input_ids = [101] + text_1 + [102] + text_2 + [102] + text_3
        encoded_input = tokenizer(questions=["question sequence"], titles=["title sequence"], texts=["text sequence"])
        self.assertIn("input_ids", encoded_input)
        self.assertIn("attention_mask", encoded_input)
        self.assertListEqual(encoded_input["input_ids"][0], expected_input_ids)