token_classification.md 20.1 KB
Newer Older
Steven Liu's avatar
Steven Liu committed
1
2
3
4
5
6
7
8
9
10
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
11
12
13
14

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

Steven Liu's avatar
Steven Liu committed
15
16
17
18
-->

# Token classification

19
20
[[open-in-colab]]

Steven Liu's avatar
Steven Liu committed
21
22
<Youtube id="wVHdVlPScxA"/>

amyeroberts's avatar
amyeroberts committed
23
Token classification assigns a label to individual tokens in a sentence. One of the most common token classification tasks is Named Entity Recognition (NER). NER attempts to find a label for each entity in a sentence, such as a person, location, or organization.
Steven Liu's avatar
Steven Liu committed
24

25
26
27
28
This guide will show you how to:

1. Finetune [DistilBERT](https://huggingface.co/distilbert-base-uncased) on the [WNUT 17](https://huggingface.co/datasets/wnut_17) dataset to detect new entities.
2. Use your finetuned model for inference.
Steven Liu's avatar
Steven Liu committed
29
30

<Tip>
31
The task illustrated in this tutorial is supported by the following model architectures:
Steven Liu's avatar
Steven Liu committed
32

33
34
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->

35
[ALBERT](../model_doc/albert), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BioGpt](../model_doc/biogpt), [BLOOM](../model_doc/bloom), [BROS](../model_doc/bros), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [ConvBERT](../model_doc/convbert), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [ESM](../model_doc/esm), [Falcon](../model_doc/falcon), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [I-BERT](../model_doc/ibert), [LayoutLM](../model_doc/layoutlm), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LiLT](../model_doc/lilt), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [MarkupLM](../model_doc/markuplm), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [MPT](../model_doc/mpt), [MRA](../model_doc/mra), [MT5](../model_doc/mt5), [Nezha](../model_doc/nezha), [Nystr枚mformer](../model_doc/nystromformer), [Phi](../model_doc/phi), [QDQBert](../model_doc/qdqbert), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [SqueezeBERT](../model_doc/squeezebert), [T5](../model_doc/t5), [UMT5](../model_doc/umt5), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso)
36
37

<!--End of the generated tip-->
Steven Liu's avatar
Steven Liu committed
38
39
40

</Tip>

41
42
43
Before you begin, make sure you have all the necessary libraries installed:

```bash
44
pip install transformers datasets evaluate seqeval
45
46
47
48
49
50
51
52
53
54
```

We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

Steven Liu's avatar
Steven Liu committed
55
56
## Load WNUT 17 dataset

57
Start by loading the WNUT 17 dataset from the 馃 Datasets library:
Steven Liu's avatar
Steven Liu committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

```py
>>> from datasets import load_dataset

>>> wnut = load_dataset("wnut_17")
```

Then take a look at an example:

```py
>>> wnut["train"][0]
{'id': '0',
 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.']
}
```

75
Each number in `ner_tags` represents an entity. Convert the numbers to their label names to find out what the entities are:
Steven Liu's avatar
Steven Liu committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

```py
>>> label_list = wnut["train"].features[f"ner_tags"].feature.names
>>> label_list
[
    "O",
    "B-corporation",
    "I-corporation",
    "B-creative-work",
    "I-creative-work",
    "B-group",
    "I-group",
    "B-location",
    "I-location",
    "B-person",
    "I-person",
    "B-product",
    "I-product",
]
```

97
The letter that prefixes each `ner_tag` indicates the token position of the entity:
Steven Liu's avatar
Steven Liu committed
98
99

- `B-` indicates the beginning of an entity.
100
- `I-` indicates a token is contained inside the same entity (for example, the `State` token is a part of an entity like
Steven Liu's avatar
Steven Liu committed
101
102
103
104
105
106
107
  `Empire State Building`).
- `0` indicates the token doesn't correspond to any entity.

## Preprocess

<Youtube id="iY2AZYdZAr0"/>

108
The next step is to load a DistilBERT tokenizer to preprocess the `tokens` field:
Steven Liu's avatar
Steven Liu committed
109
110
111
112
113
114
115

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
```

116
As you saw in the example `tokens` field above, it looks like the input has already been tokenized. But the input actually hasn't been tokenized yet and you'll need to set `is_split_into_words=True` to tokenize the words into subwords. For example:
Steven Liu's avatar
Steven Liu committed
117
118

```py
119
>>> example = wnut["train"][0]
Steven Liu's avatar
Steven Liu committed
120
121
122
123
124
125
>>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True)
>>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
>>> tokens
['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]']
```

126
However, this adds some special tokens `[CLS]` and `[SEP]` and the subword tokenization creates a mismatch between the input and labels. A single word corresponding to a single label may now be split into two subwords. You'll need to realign the tokens and labels by:
Steven Liu's avatar
Steven Liu committed
127

128
1. Mapping all tokens to their corresponding word with the [`word_ids`](https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.BatchEncoding.word_ids) method.
129
2. Assigning the label `-100` to the special tokens `[CLS]` and `[SEP]` so they're ignored by the PyTorch loss function (see [CrossEntropyLoss](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)).
Steven Liu's avatar
Steven Liu committed
130
131
3. Only labeling the first token of a given word. Assign `-100` to other subtokens from the same word.

132
Here is how you can create a function to realign the tokens and labels, and truncate sequences to be no longer than DistilBERT's maximum input length:
Steven Liu's avatar
Steven Liu committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

```py
>>> def tokenize_and_align_labels(examples):
...     tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)

...     labels = []
...     for i, label in enumerate(examples[f"ner_tags"]):
...         word_ids = tokenized_inputs.word_ids(batch_index=i)  # Map tokens to their respective word.
...         previous_word_idx = None
...         label_ids = []
...         for word_idx in word_ids:  # Set the special tokens to -100.
...             if word_idx is None:
...                 label_ids.append(-100)
...             elif word_idx != previous_word_idx:  # Only label the first token of a given word.
...                 label_ids.append(label[word_idx])
...             else:
...                 label_ids.append(-100)
...             previous_word_idx = word_idx
...         labels.append(label_ids)

...     tokenized_inputs["labels"] = labels
...     return tokenized_inputs
```

157
To apply the preprocessing function over the entire dataset, use 馃 Datasets [`~datasets.Dataset.map`] function. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
Steven Liu's avatar
Steven Liu committed
158
159
160
161
162

```py
>>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True)
```

163
Now create a batch of examples using [`DataCollatorWithPadding`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length.
Steven Liu's avatar
Steven Liu committed
164

Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
<frameworkcontent>
<pt>
Steven Liu's avatar
Steven Liu committed
167
168
169
170
```py
>>> from transformers import DataCollatorForTokenClassification

>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
174
```
</pt>
<tf>
```py
Steven Liu's avatar
Steven Liu committed
175
176
177
178
>>> from transformers import DataCollatorForTokenClassification

>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf")
```
Sylvain Gugger's avatar
Sylvain Gugger committed
179
180
</tf>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
181

182
## Evaluate
Steven Liu's avatar
Steven Liu committed
183

184
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) framework (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric). Seqeval actually produces several scores: precision, recall, F1, and accuracy.
Steven Liu's avatar
Steven Liu committed
185
186

```py
187
>>> import evaluate
Steven Liu's avatar
Steven Liu committed
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
>>> seqeval = evaluate.load("seqeval")
```

Get the NER labels first, and then create a function that passes your true predictions and true labels to [`~evaluate.EvaluationModule.compute`] to calculate the scores:

```py
>>> import numpy as np

>>> labels = [label_list[i] for i in example[f"ner_tags"]]


>>> def compute_metrics(p):
...     predictions, labels = p
...     predictions = np.argmax(predictions, axis=2)

...     true_predictions = [
...         [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
...         for prediction, label in zip(predictions, labels)
...     ]
...     true_labels = [
...         [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
...         for prediction, label in zip(predictions, labels)
...     ]

...     results = seqeval.compute(predictions=true_predictions, references=true_labels)
...     return {
...         "precision": results["overall_precision"],
...         "recall": results["overall_recall"],
...         "f1": results["overall_f1"],
...         "accuracy": results["overall_accuracy"],
...     }
Steven Liu's avatar
Steven Liu committed
220
221
```

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.

## Train

Before you start training your model, create a map of the expected ids to their labels with `id2label` and `label2id`:

```py
>>> id2label = {
...     0: "O",
...     1: "B-corporation",
...     2: "I-corporation",
...     3: "B-creative-work",
...     4: "I-creative-work",
...     5: "B-group",
...     6: "I-group",
...     7: "B-location",
...     8: "I-location",
...     9: "B-person",
...     10: "I-person",
...     11: "B-product",
...     12: "I-product",
... }
>>> label2id = {
...     "O": 0,
...     "B-corporation": 1,
...     "I-corporation": 2,
...     "B-creative-work": 3,
...     "I-creative-work": 4,
...     "B-group": 5,
...     "I-group": 6,
...     "B-location": 7,
...     "I-location": 8,
...     "B-person": 9,
...     "I-person": 10,
...     "B-product": 11,
...     "I-product": 12,
... }
```

<frameworkcontent>
<pt>
Steven Liu's avatar
Steven Liu committed
263
264
<Tip>

265
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
Steven Liu's avatar
Steven Liu committed
266
267

</Tip>
268

269
270
271
272
273
274
275
276
277
You're ready to start training your model now! Load DistilBERT with [`AutoModelForTokenClassification`] along with the number of expected labels, and the label mappings:

```py
>>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer

>>> model = AutoModelForTokenClassification.from_pretrained(
...     "distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
... )
```
Steven Liu's avatar
Steven Liu committed
278
279
280

At this point, only three steps remain:

281
282
283
1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the seqeval scores and save the training checkpoint.
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
Steven Liu's avatar
Steven Liu committed
284
285
286

```py
>>> training_args = TrainingArguments(
287
...     output_dir="my_awesome_wnut_model",
Steven Liu's avatar
Steven Liu committed
288
289
290
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
291
...     num_train_epochs=2,
Steven Liu's avatar
Steven Liu committed
292
...     weight_decay=0.01,
293
294
295
296
...     evaluation_strategy="epoch",
...     save_strategy="epoch",
...     load_best_model_at_end=True,
...     push_to_hub=True,
Steven Liu's avatar
Steven Liu committed
297
298
299
300
301
302
303
304
305
... )

>>> trainer = Trainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_wnut["train"],
...     eval_dataset=tokenized_wnut["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
306
...     compute_metrics=compute_metrics,
Steven Liu's avatar
Steven Liu committed
307
308
309
310
311
... )

>>> trainer.train()
```

312
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
Steven Liu's avatar
Steven Liu committed
313

314
315
```py
>>> trainer.push_to_hub()
Steven Liu's avatar
Steven Liu committed
316
```
317
318
</pt>
<tf>
319
320
<Tip>

321
If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!
322
323

</Tip>
324
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:
Steven Liu's avatar
Steven Liu committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

```py
>>> from transformers import create_optimizer

>>> batch_size = 16
>>> num_train_epochs = 3
>>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs
>>> optimizer, lr_schedule = create_optimizer(
...     init_lr=2e-5,
...     num_train_steps=num_train_steps,
...     weight_decay_rate=0.01,
...     num_warmup_steps=0,
... )
```

340
Then you can load DistilBERT with [`TFAutoModelForTokenClassification`] along with the number of expected labels, and the label mappings:
Steven Liu's avatar
Steven Liu committed
341
342
343
344

```py
>>> from transformers import TFAutoModelForTokenClassification

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
>>> model = TFAutoModelForTokenClassification.from_pretrained(
...     "distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
... )
```

Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:

```py
>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_wnut["train"],
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )

>>> tf_validation_set = model.prepare_tf_dataset(
...     tokenized_wnut["validation"],
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )
Steven Liu's avatar
Steven Liu committed
366
367
```

368
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to:
Steven Liu's avatar
Steven Liu committed
369
370
371
372

```py
>>> import tensorflow as tf

373
>>> model.compile(optimizer=optimizer)  # No loss argument!
Steven Liu's avatar
Steven Liu committed
374
375
```

amyeroberts's avatar
amyeroberts committed
376
The last two things to setup before you start training is to compute the seqeval scores from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](../main_classes/keras_callbacks).
377
378
379
380
381
382
383
384
385
386

Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:

```py
>>> from transformers.keras_callbacks import KerasMetricCallback

>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```

Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
Steven Liu's avatar
Steven Liu committed
387
388

```py
389
390
391
392
393
394
>>> from transformers.keras_callbacks import PushToHubCallback

>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_wnut_model",
...     tokenizer=tokenizer,
... )
Steven Liu's avatar
Steven Liu committed
395
```
396
397
398
399
400
401
402
403
404
405
406
407
408
409

Then bundle your callbacks together:

```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```

Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:

```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
```

Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
410
411
</tf>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
412
413
414

<Tip>

415
For a more in-depth example of how to finetune a model for token classification, take a look at the corresponding
416
417
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
Steven Liu's avatar
Steven Liu committed
418

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
</Tip>

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Grab some text you'd like to run inference on:

```py
>>> text = "The Golden State Warriors are an American professional basketball team based in San Francisco."
```

The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for NER with your model, and pass your text to it:

```py
>>> from transformers import pipeline

>>> classifier = pipeline("ner", model="stevhliu/my_awesome_wnut_model")
>>> classifier(text)
[{'entity': 'B-location',
  'score': 0.42658573,
  'index': 2,
  'word': 'golden',
  'start': 4,
  'end': 10},
 {'entity': 'I-location',
  'score': 0.35856336,
  'index': 3,
  'word': 'state',
  'start': 11,
  'end': 16},
 {'entity': 'B-group',
  'score': 0.3064001,
  'index': 4,
  'word': 'warriors',
  'start': 17,
  'end': 25},
 {'entity': 'B-location',
  'score': 0.65523505,
  'index': 13,
  'word': 'san',
  'start': 80,
  'end': 83},
 {'entity': 'B-location',
  'score': 0.4668663,
  'index': 14,
  'word': 'francisco',
  'start': 84,
  'end': 93}]
```

You can also manually replicate the results of the `pipeline` if you'd like:

<frameworkcontent>
<pt>
Tokenize the text and return PyTorch tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> inputs = tokenizer(text, return_tensors="pt")
```

Pass your inputs to the model and return the `logits`:

```py
>>> from transformers import AutoModelForTokenClassification

>>> model = AutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
```

Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label:

```py
>>> predictions = torch.argmax(logits, dim=2)
>>> predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]]
>>> predicted_token_class
['O',
 'O',
 'B-location',
 'I-location',
 'B-group',
 'O',
 'O',
 'O',
 'O',
 'O',
 'O',
 'O',
 'O',
 'B-location',
 'B-location',
 'O',
 'O']
```
</pt>
<tf>
Tokenize the text and return TensorFlow tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> inputs = tokenizer(text, return_tensors="tf")
```

Pass your inputs to the model and return the `logits`:

```py
>>> from transformers import TFAutoModelForTokenClassification

>>> model = TFAutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> logits = model(**inputs).logits
```

Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label:

```py
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> predicted_token_class = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_token_class
['O',
 'O',
 'B-location',
 'I-location',
 'B-group',
 'O',
 'O',
 'O',
 'O',
 'O',
 'O',
 'O',
 'O',
 'B-location',
 'B-location',
 'O',
 'O']
```
</tf>
562
</frameworkcontent>