test_modeling_encoder_decoder.py 14.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

from transformers import is_torch_available

# TODO(PVP): this line reruns all the tests in BertModelTest; not sure whether this can be prevented
# for now only run module with pytest tests/test_modeling_encoder_decoder.py::EncoderDecoderModelTest
24
from .test_modeling_bert import BertModelTester
25
from .test_modeling_common import ids_tensor
26
27
28
29
from .utils import require_torch, slow, torch_device


if is_torch_available():
30
31
    from transformers import BertModel, EncoderDecoderModel, EncoderDecoderConfig
    from transformers.modeling_bert import BertLMHeadModel
32
33
34
35
36
37
38
    import numpy as np
    import torch


@require_torch
class EncoderDecoderModelTest(unittest.TestCase):
    def prepare_config_and_inputs_bert(self):
39
        bert_model_tester = BertModelTester(self)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        encoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
            "labels": decoder_token_labels,
75
76
        }

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def create_and_check_bert_encoder_decoder_model_from_pretrained_configs(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = EncoderDecoderModel(encoder_decoder_config)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))

107
108
109
110
111
112
113
114
115
116
117
118
    def create_and_check_bert_encoder_decoder_model(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model = BertModel(config)
119
        decoder_model = BertLMHeadModel(decoder_config)
120
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
121
122
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
        encoder_outputs = (encoder_hidden_states,)
        outputs_encoder_decoder = enc_dec_model(
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))

    def create_and_check_bert_encoder_decoder_model_from_pretrained(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model = BertModel(config)
156
        decoder_model = BertLMHeadModel(decoder_config)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
        enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))

    def create_and_check_save_and_load(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model = BertModel(config)
182
        decoder_model = BertLMHeadModel(decoder_config)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                enc_dec_model.save_pretrained(tmpdirname)
                EncoderDecoderModel.from_pretrained(tmpdirname)

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def create_and_check_save_and_load_encoder_decoder_model(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model = BertModel(config)
223
        decoder_model = BertLMHeadModel(decoder_config)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
                enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
                enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
                EncoderDecoderModel.from_encoder_decoder_pretrained(
                    encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
                    decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
                )

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def check_loss_output(self, loss):
        self.assertEqual(loss.size(), ())

Sylvain Gugger's avatar
Sylvain Gugger committed
259
    def create_and_check_bert_encoder_decoder_model_labels(
260
261
262
263
264
265
266
267
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
268
        labels,
269
270
271
        **kwargs
    ):
        encoder_model = BertModel(config)
272
        decoder_model = BertLMHeadModel(decoder_config)
273
274
275
276
277
278
279
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
280
            labels=labels,
281
282
283
284
285
286
287
288
289
290
291
292
        )

        mlm_loss = outputs_encoder_decoder[0]
        self.check_loss_output(mlm_loss)
        # check that backprop works
        mlm_loss.backward()

        self.assertEqual(outputs_encoder_decoder[1].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[2].shape, (input_ids.shape + (config.hidden_size,)))

    def create_and_check_bert_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
        encoder_model = BertModel(config)
293
        decoder_model = BertLMHeadModel(decoder_config)
294
295
296
297
298
299
300
301
302
303
304
305
306
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(generated_output.shape, (input_ids.shape[0],) + (decoder_config.max_length,))

    def test_bert_encoder_decoder_model(self):
        input_ids_dict = self.prepare_config_and_inputs_bert()
        self.create_and_check_bert_encoder_decoder_model(**input_ids_dict)

307
308
309
310
    def test_bert_encoder_decoder_model_from_pretrained_configs(self):
        input_ids_dict = self.prepare_config_and_inputs_bert()
        self.create_and_check_bert_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)

311
312
313
314
315
316
317
318
319
320
321
322
    def test_bert_encoder_decoder_model_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs_bert()
        self.create_and_check_bert_encoder_decoder_model_from_pretrained(**input_ids_dict)

    def test_save_and_load_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs_bert()
        self.create_and_check_save_and_load(**input_ids_dict)

    def test_save_and_load_from_encoder_decoder_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs_bert()
        self.create_and_check_save_and_load_encoder_decoder_model(**input_ids_dict)

Sylvain Gugger's avatar
Sylvain Gugger committed
323
    def test_bert_encoder_decoder_model_labels(self):
324
        input_ids_dict = self.prepare_config_and_inputs_bert()
Sylvain Gugger's avatar
Sylvain Gugger committed
325
        self.create_and_check_bert_encoder_decoder_model_labels(**input_ids_dict)
326
327
328
329
330
331
332

    def test_bert_encoder_decoder_model_generate(self):
        input_ids_dict = self.prepare_config_and_inputs_bert()
        self.create_and_check_bert_encoder_decoder_model_generate(**input_ids_dict)

    @slow
    def test_real_bert_model_from_pretrained(self):
333
        model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
334
        self.assertIsNotNone(model)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

    @slow
    def test_real_bert_model_from_pretrained_has_cross_attention(self):
        model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
        self.assertTrue(hasattr(model.decoder.bert.encoder.layer[0], "crossattention"))

    @slow
    def test_real_bert_model_save_load_from_pretrained(self):
        model_2 = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
        model_2.to(torch_device)
        input_ids = ids_tensor([13, 5], model_2.config.encoder.vocab_size)
        decoder_input_ids = ids_tensor([13, 1], model_2.config.encoder.vocab_size)
        attention_mask = ids_tensor([13, 5], vocab_size=2)
        with torch.no_grad():
            outputs = model_2(input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask,)
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmp_dirname:
                model_2.save_pretrained(tmp_dirname)
                model_1 = EncoderDecoderModel.from_pretrained(tmp_dirname)
                model_1.to(torch_device)

                after_outputs = model_1(
                    input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)