test_tokenization_roberta.py 14.3 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import itertools
LysandreJik's avatar
LysandreJik committed
18
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
20
import unittest
21

22
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
Sylvain Gugger's avatar
Sylvain Gugger committed
23
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
24
from transformers.testing_utils import require_tokenizers, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
25

Yih-Dar's avatar
Yih-Dar committed
26
from ...test_tokenization_common import TokenizerTesterMixin
27
28


29
@require_tokenizers
30
class RobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
31
    from_pretrained_id = "FacebookAI/roberta-base"
LysandreJik's avatar
LysandreJik committed
32
    tokenizer_class = RobertaTokenizer
33
34
    rust_tokenizer_class = RobertaTokenizerFast
    test_rust_tokenizer = True
35
    from_pretrained_kwargs = {"cls_token": "<s>"}
36

LysandreJik's avatar
LysandreJik committed
37
    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
38
        super().setUp()
LysandreJik's avatar
LysandreJik committed
39
40

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
63
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
64
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
LysandreJik's avatar
LysandreJik committed
65
66
        self.special_tokens_map = {"unk_token": "<unk>"}

67
68
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
69
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
thomwolf's avatar
thomwolf committed
70
            fp.write(json.dumps(vocab_tokens) + "\n")
71
        with open(self.merges_file, "w", encoding="utf-8") as fp:
LysandreJik's avatar
LysandreJik committed
72
            fp.write("\n".join(merges))
73

74
75
    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
76
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
77

78
79
    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
80
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
81
82

    def get_input_output_texts(self, tokenizer):
83
84
        input_text = "lower newer"
        output_text = "lower newer"
LysandreJik's avatar
LysandreJik committed
85
86
87
        return input_text, output_text

    def test_full_tokenizer(self):
88
        tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
thomwolf's avatar
thomwolf committed
89
        text = "lower newer"
90
91
        bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
        tokens = tokenizer.tokenize(text)  # , add_prefix_space=True)
LysandreJik's avatar
LysandreJik committed
92
        self.assertListEqual(tokens, bpe_tokens)
93

LysandreJik's avatar
LysandreJik committed
94
        input_tokens = tokens + [tokenizer.unk_token]
95
        input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
96
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
97

LysandreJik's avatar
LysandreJik committed
98
99
    def roberta_dict_integration_testing(self):
        tokenizer = self.get_tokenizer()
100

101
        self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2])
LysandreJik's avatar
LysandreJik committed
102
        self.assertListEqual(
103
104
            tokenizer.encode("Hello world! c茅c茅 herlolip 418", add_special_tokens=False),
            [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
LysandreJik's avatar
LysandreJik committed
105
        )
106

107
    @slow
108
    def test_sequence_builders(self):
109
        tokenizer = self.tokenizer_class.from_pretrained("FacebookAI/roberta-base")
110

Lysandre's avatar
Remove  
Lysandre committed
111
112
        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
113

114
115
116
        encoded_text_from_decode = tokenizer.encode(
            "sequence builders", add_special_tokens=True, add_prefix_space=False
        )
117
        encoded_pair_from_decode = tokenizer.encode(
118
            "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
119
        )
LysandreJik's avatar
LysandreJik committed
120

121
122
        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
123

LysandreJik's avatar
LysandreJik committed
124
125
        assert encoded_sentence == encoded_text_from_decode
        assert encoded_pair == encoded_pair_from_decode
126
127
128
129
130
131
132
133

    def test_space_encoding(self):
        tokenizer = self.get_tokenizer()

        sequence = "Encode this sequence."
        space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]]

        # Testing encoder arguments
134
        encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False)
135
136
137
138
139
140
141
142
143
144
        first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
        self.assertNotEqual(first_char, space_encoding)

        encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
        first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
        self.assertEqual(first_char, space_encoding)

        tokenizer.add_special_tokens({"bos_token": "<s>"})
        encoded = tokenizer.encode(sequence, add_special_tokens=True)
        first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0]
145
        self.assertNotEqual(first_char, space_encoding)
146

147
        # Testing spaces after special tokens
148
        mask = "<mask>"
149
150
151
        tokenizer.add_special_tokens(
            {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)}
        )  # mask token has a left space
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        mask_ind = tokenizer.convert_tokens_to_ids(mask)

        sequence = "Encode <mask> sequence"
        sequence_nospace = "Encode <mask>sequence"

        encoded = tokenizer.encode(sequence)
        mask_loc = encoded.index(mask_ind)
        first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
        self.assertEqual(first_char, space_encoding)

        encoded = tokenizer.encode(sequence_nospace)
        mask_loc = encoded.index(mask_ind)
        first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
        self.assertNotEqual(first_char, space_encoding)
166

amyeroberts's avatar
amyeroberts committed
167
    @unittest.skip
168
169
170
171
172
    def test_pretokenized_inputs(self):
        pass

    def test_embeded_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
173
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
                tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)

                # token_type_ids should put 0 everywhere
                self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                # attention_mask should put 1 everywhere, so sum over length should be 1
                self.assertEqual(
                    sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
                    sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
                )

                tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])

                # Rust correctly handles the space before the mask while python doesnt
                self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
                self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])

                self.assertSequenceEqual(
                    tokens_p_str, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"]
                )
                self.assertSequenceEqual(
                    tokens_r_str, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"]
                )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

    def test_change_add_prefix_space_and_trim_offsets_args(self):
        for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2):
            tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                self.tmpdirname, use_fast=True, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets
            )

            pre_tokenizer_state = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__())
            post_processor_state = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__())

            self.assertEqual(pre_tokenizer_state["add_prefix_space"], add_prefix_space)

            self.assertEqual(post_processor_state["add_prefix_space"], add_prefix_space)
            self.assertEqual(post_processor_state["trim_offsets"], trim_offsets)

    def test_offsets_mapping_with_different_add_prefix_space_and_trim_space_arguments(self):
        # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
        # `trim_offsets`
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                text_of_1_token = "hello"  # `hello` is a token in the vocabulary of `pretrained_name`
                text = f"{text_of_1_token} {text_of_1_token}"

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
                )
                encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
                self.assertEqual(
                    encoding.offset_mapping[1],
                    (len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
                )

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
                )
                encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
                self.assertEqual(
                    encoding.offset_mapping[1],
                    (len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
                )

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
                )
                encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
                self.assertEqual(
                    encoding.offset_mapping[1],
                    (len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
                )

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
                )
                encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
                self.assertEqual(
                    encoding.offset_mapping[1],
                    (len(text_of_1_token), len(text_of_1_token) + 1 + len(text_of_1_token)),
                )

                text = f" {text}"

                # tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                #     pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
                # )
                # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
                # self.assertEqual(
                #     encoding.offset_mapping[1],
                #     (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
                # )

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=True
                )
                encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
                self.assertEqual(
                    encoding.offset_mapping[1],
                    (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
                )

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=False
                )
                encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
                self.assertEqual(
                    encoding.offset_mapping[1],
                    (1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
                )

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, use_fast=True, add_prefix_space=False, trim_offsets=False
                )
                encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
                self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(text_of_1_token)))
                self.assertEqual(
                    encoding.offset_mapping[1],
                    (1 + len(text_of_1_token), 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
                )