test_image_processing_owlv2.py 6.3 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers.testing_utils import require_torch, require_vision, slow
20
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
21
22
23
24
25
26
27

from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs


if is_vision_available():
    from PIL import Image

28
29
30
31
    from transformers import AutoProcessor, Owlv2ForObjectDetection, Owlv2ImageProcessor

if is_torch_available():
    import torch
NielsRogge's avatar
NielsRogge committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92


class Owlv2ImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
        image_std=[0.26862954, 0.26130258, 0.27577711],
        do_convert_rgb=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size if size is not None else {"height": 18, "width": 18}
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_convert_rgb = do_convert_rgb

    def prepare_image_processor_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
        }

    def expected_output_image_shape(self, images):
        return self.num_channels, self.size["height"], self.size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )


@require_torch
@require_vision
class Owlv2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = Owlv2ImageProcessor if is_vision_available() else None

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
93
        super().setUp()
NielsRogge's avatar
NielsRogge committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        self.image_processor_tester = Owlv2ImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size={"height": 42, "width": 42}
        )
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})

    @slow
    def test_image_processor_integration_test(self):
        processor = Owlv2ImageProcessor()

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        pixel_values = processor(image, return_tensors="pt").pixel_values

        mean_value = round(pixel_values.mean().item(), 4)
        self.assertEqual(mean_value, 0.2353)

127
128
129
130
131
132
133
    @slow
    def test_image_processor_integration_test_resize(self):
        checkpoint = "google/owlv2-base-patch16-ensemble"
        processor = AutoProcessor.from_pretrained(checkpoint)
        model = Owlv2ForObjectDetection.from_pretrained(checkpoint)

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
134
135
136
137
138
139
140
141
        text = ["cat"]
        target_size = image.size[::-1]
        expected_boxes = torch.tensor(
            [
                [341.66656494140625, 23.38756561279297, 642.321044921875, 371.3482971191406],
                [6.753320693969727, 51.96149826049805, 326.61810302734375, 473.12982177734375],
            ]
        )
142

143
144
        # single image
        inputs = processor(text=[text], images=[image], return_tensors="pt")
145
146
147
        with torch.no_grad():
            outputs = model(**inputs)

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        results = processor.post_process_object_detection(outputs, threshold=0.2, target_sizes=[target_size])[0]

        boxes = results["boxes"]
        self.assertTrue(
            torch.allclose(boxes, expected_boxes, atol=1e-2),
            f"Single image bounding boxes fail. Expected {expected_boxes}, got {boxes}",
        )

        # batch of images
        inputs = processor(text=[text, text], images=[image, image], return_tensors="pt")
        with torch.no_grad():
            outputs = model(**inputs)
        results = processor.post_process_object_detection(
            outputs, threshold=0.2, target_sizes=[target_size, target_size]
        )
163

164
165
166
167
168
169
        for result in results:
            boxes = result["boxes"]
            self.assertTrue(
                torch.allclose(boxes, expected_boxes, atol=1e-2),
                f"Batch image bounding boxes fail. Expected {expected_boxes}, got {boxes}",
            )
170

amyeroberts's avatar
amyeroberts committed
171
    @unittest.skip(reason="OWLv2 doesn't treat 4 channel PIL and numpy consistently yet")  # FIXME Amy
NielsRogge's avatar
NielsRogge committed
172
173
    def test_call_numpy_4_channels(self):
        pass