test_tokenization_nllb.py 19.3 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil
import tempfile
import unittest

from transformers import (
    SPIECE_UNDERLINE,
    AddedToken,
    BatchEncoding,
    NllbTokenizer,
    NllbTokenizerFast,
    is_torch_available,
)
27
from transformers.models.nllb.tokenization_nllb import FAIRSEQ_LANGUAGE_CODES
Lysandre Debut's avatar
Lysandre Debut committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from transformers.testing_utils import (
    get_tests_dir,
    nested_simplify,
    require_sentencepiece,
    require_tokenizers,
    require_torch,
)

from ...test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")


if is_torch_available():
    from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right

EN_CODE = 256047
RO_CODE = 256145


@require_sentencepiece
@require_tokenizers
class NllbTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
52
    from_pretrained_id = "facebook/nllb-200-distilled-600M"
Lysandre Debut's avatar
Lysandre Debut committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    tokenizer_class = NllbTokenizer
    rust_tokenizer_class = NllbTokenizerFast
    test_rust_tokenizer = True
    test_sentencepiece = True
    from_pretrained_kwargs = {}

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

    # overwrite from test_tokenization_common to speed up test
    def test_save_pretrained(self):
        self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {})
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

    @require_torch
    def test_prepare_seq2seq_batch(self):
        if not self.test_seq2seq:
amyeroberts's avatar
amyeroberts committed
210
            self.skipTest(reason="test_seq2seq is set to False")
Lysandre Debut's avatar
Lysandre Debut committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Longer text that will definitely require truncation.
                src_text = [
                    " UN Chief Says There Is No Military Solution in Syria",
                    " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
                    " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
                    " will only worsen the violence and misery for millions of people.",
                ]
                tgt_text = [
                    "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
                    "Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al"
                    ' Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i'
                    " c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.",
                ]
                try:
                    batch = tokenizer.prepare_seq2seq_batch(
                        src_texts=src_text,
                        tgt_texts=tgt_text,
                        max_length=3,
                        max_target_length=10,
                        return_tensors="pt",
                        src_lang="eng_Latn",
                        tgt_lang="ron_Latn",
                    )
                except NotImplementedError:
amyeroberts's avatar
amyeroberts committed
239
                    self.skipTest(reason="Encountered NotImplementedError when calling prepare_seq2seq_batch")
Lysandre Debut's avatar
Lysandre Debut committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 10)
                # max_target_length will default to max_length if not specified
                batch = tokenizer.prepare_seq2seq_batch(
                    src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt"
                )
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 3)

                batch_encoder_only = tokenizer.prepare_seq2seq_batch(
                    src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt"
                )
                self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
                self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
                self.assertNotIn("decoder_input_ids", batch_encoder_only)

amyeroberts's avatar
amyeroberts committed
256
    @unittest.skip(reason="Unfortunately way too slow to build a BPE with SentencePiece.")
Lysandre Debut's avatar
Lysandre Debut committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    def test_save_slow_from_fast_and_reload_fast(self):
        pass

    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                added_tokens = [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                r_output = tokenizer_r.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertTrue(special_token_id in r_output)

                if self.test_slow_tokenizer:
                    tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name,
                        additional_special_tokens=added_tokens,
                        **kwargs,  # , from_slow=True <- unfortunately too slow to convert
                    )
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs
                    )

                    p_output = tokenizer_p.encode("Hey this is a <special> token")

                    cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                    self.assertEqual(p_output, r_output)
                    self.assertEqual(cr_output, r_output)
                    self.assertTrue(special_token_id in p_output)
                    self.assertTrue(special_token_id in cr_output)

amyeroberts's avatar
amyeroberts committed
293
    @unittest.skip(reason="Need to fix this after #26538")
294
295
296
    def test_training_new_tokenizer(self):
        pass

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    def test_new_language_codes(self):
        code1, code2 = "myv_Cyrl", "myv_Latn"
        new_codes = FAIRSEQ_LANGUAGE_CODES + [code1, code2]
        # here I create a tokenizer with the default behaviour
        tok1 = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
        # here I enhance the model's vocabulary with two new language codes
        tok2 = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", additional_special_tokens=new_codes)

        # testing that the new codes can work
        self.assertEqual(len(tok2), len(tok1) + 2)
        tok2.tgt_lang = code1
        tok2.src_lang = code2

        self.assertEqual(tok2("拧umbrat!").input_ids[0], tok2.convert_tokens_to_ids(code2))
        with tempfile.TemporaryDirectory() as tempdir:
            # testing that saving and loading the tokenizer preserves the new behaviour
            tok2.save_pretrained(tempdir)
            tok3 = NllbTokenizer.from_pretrained(tempdir)
            self.assertEqual(tok2.get_vocab(), tok3.get_vocab())
            tok3.src_lang = code2
            self.assertEqual(tok3("拧umbrat!").input_ids[0], tok3.convert_tokens_to_ids(code2))

            # testing that saving and loading the tokenizer preserves the new behaviour
            tok2.save_pretrained(tempdir)
            tok3 = NllbTokenizer(f"{tempdir}/sentencepiece.bpe.model", additional_special_tokens=None)
            self.assertEqual(len(tok3), 256204)  # legacy
            tok4 = NllbTokenizer(f"{tempdir}/sentencepiece.bpe.model", additional_special_tokens=[])
            self.assertEqual(len(tok4), 256002)
            tok5 = NllbTokenizer(f"{tempdir}/sentencepiece.bpe.model", additional_special_tokens=[code1, code2])
            self.assertEqual(len(tok5), 256004)

Lysandre Debut's avatar
Lysandre Debut committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

@require_torch
@require_sentencepiece
@require_tokenizers
class NllbDistilledIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/nllb-200-distilled-600M"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
        "Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei"
        ' pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor'
        " face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.",
    ]
    expected_src_tokens = [
345
        256047,
Lysandre Debut's avatar
Lysandre Debut committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        16297,
        134408,
        8165,
        248066,
        14734,
        950,
        1135,
        105721,
        3573,
        83,
        27352,
        108,
        49486,
        2,
    ]

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: NllbTokenizer = NllbTokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="eng_Latn", tgt_lang="ron_Latn"
        )
        cls.pad_token_id = 1
        return cls

    def test_enro_tokenizer_batch_encode_plus(self):
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_enro_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
376
        generated_ids = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047]  # fmt: skip
Lysandre Debut's avatar
Lysandre Debut committed
377
378
379
380
381
382
383
384
385
386
387

        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_romanian)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_enro_tokenizer_truncation(self):
        src_text = ["this is gunna be a long sentence " * 20]
        assert isinstance(src_text[0], str)
        desired_max_length = 10
        ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
388
389
        self.assertEqual(ids[-1], 2)
        self.assertEqual(ids[0], EN_CODE)
Lysandre Debut's avatar
Lysandre Debut committed
390
391
392
393
394
395
396
397
        self.assertEqual(len(ids), desired_max_length)

    def test_mask_token(self):
        self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [256203, 3])

    @require_torch
    def test_enro_tokenizer_prepare_batch(self):
        batch = self.tokenizer(
398
399
400
401
402
403
            self.src_text,
            text_target=self.tgt_text,
            padding=True,
            truncation=True,
            max_length=len(self.expected_src_tokens),
            return_tensors="pt",
Lysandre Debut's avatar
Lysandre Debut committed
404
405
        )
        batch["decoder_input_ids"] = shift_tokens_right(
406
            batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.convert_tokens_to_ids("ron_Latn")
Lysandre Debut's avatar
Lysandre Debut committed
407
408
409
410
411
412
413
414
        )

        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 15), batch.input_ids.shape)
        self.assertEqual((2, 15), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(self.expected_src_tokens, result)
415
        self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0])  # EOS
Lysandre Debut's avatar
Lysandre Debut committed
416
        # Test that special tokens are reset
417
418
        self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
        self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
Lysandre Debut's avatar
Lysandre Debut committed
419
420
421

    def test_seq2seq_max_length(self):
        batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
422
423
424
        targets = self.tokenizer(
            text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt"
        )
Lysandre Debut's avatar
Lysandre Debut committed
425
426
427
428
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(
            labels,
            self.tokenizer.pad_token_id,
429
            decoder_start_token_id=self.tokenizer.convert_tokens_to_ids(self.tokenizer.tgt_lang),
Lysandre Debut's avatar
Lysandre Debut committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        )

        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 10)

    @require_torch
    def test_tokenizer_translation(self):
        inputs = self.tokenizer._build_translation_inputs(
            "A test", return_tensors="pt", src_lang="eng_Latn", tgt_lang="fra_Latn"
        )

        self.assertEqual(
            nested_simplify(inputs),
            {
                # A, test, EOS, en_XX
445
                "input_ids": [[256047, 70, 7356, 2]],
Lysandre Debut's avatar
Lysandre Debut committed
446
447
448
449
450
                "attention_mask": [[1, 1, 1, 1]],
                # ar_AR
                "forced_bos_token_id": 256057,
            },
        )
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

    @require_torch
    def test_legacy_behaviour(self):
        self.tokenizer.legacy_behaviour = True
        inputs = self.tokenizer(
            "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
        )
        self.assertEqual(
            inputs.input_ids, [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047]
        )

        self.tokenizer.legacy_behaviour = False
        inputs = self.tokenizer(
            "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
        )
        self.assertEqual(
            inputs.input_ids, [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2]
        )