test_tokenization_gpt2.py 14.6 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import json
18
import os
19
import unittest
20

21
from transformers import AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast
Sylvain Gugger's avatar
Sylvain Gugger committed
22
from transformers.models.gpt2.tokenization_gpt2 import VOCAB_FILES_NAMES
23
from transformers.testing_utils import require_jinja, require_tokenizers
24

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_tokenization_common import TokenizerTesterMixin
26

27

28
@require_tokenizers
29
class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
30
    from_pretrained_id = "openai-community/gpt2"
31
    tokenizer_class = GPT2Tokenizer
32
    rust_tokenizer_class = GPT2TokenizerFast
Anthony MOI's avatar
Anthony MOI committed
33
    test_rust_tokenizer = True
34
    from_pretrained_kwargs = {"add_prefix_space": True}
35
    test_seq2seq = False
36
37

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
38
        super().setUp()
39
40

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
62
            "<|endoftext|>",
63
        ]
64
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
65
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
66
67
        self.special_tokens_map = {"unk_token": "<unk>"}

68
69
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
70
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
thomwolf's avatar
thomwolf committed
71
            fp.write(json.dumps(vocab_tokens) + "\n")
72
        with open(self.merges_file, "w", encoding="utf-8") as fp:
73
74
            fp.write("\n".join(merges))

75
76
77
    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return GPT2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
78

Anthony MOI's avatar
Anthony MOI committed
79
80
81
82
    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return GPT2TokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

83
    def get_input_output_texts(self, tokenizer):
84
85
        input_text = "lower newer"
        output_text = "lower newer"
86
87
88
89
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
thomwolf's avatar
thomwolf committed
90
        text = "lower newer"
thomwolf's avatar
thomwolf committed
91
        bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
92
        tokens = tokenizer.tokenize(text, add_prefix_space=True)
93
94
95
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + [tokenizer.unk_token]
thomwolf's avatar
thomwolf committed
96
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
97
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
Anthony MOI's avatar
Anthony MOI committed
98
99
100

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
amyeroberts's avatar
amyeroberts committed
101
            self.skipTest(reason="test_rust_tokenizer is set to False")
Anthony MOI's avatar
Anthony MOI committed
102
103

        tokenizer = self.get_tokenizer()
Funtowicz Morgan's avatar
Funtowicz Morgan committed
104
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
Anthony MOI's avatar
Anthony MOI committed
105

106
        sequence = "lower newer"
Anthony MOI's avatar
Anthony MOI committed
107
108
109
110
111
112
113
114

        # Testing tokenization
        tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        # Testing conversion to ids without special tokens
        ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
115
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
Anthony MOI's avatar
Anthony MOI committed
116
117
118
119
120
121
122
123
124
125
126
127
        self.assertListEqual(ids, rust_ids)

        # Testing conversion to ids with special tokens
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
        ids = tokenizer.encode(sequence, add_prefix_space=True)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

        # Testing the unknown token
        input_tokens = tokens + [rust_tokenizer.unk_token]
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
        self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
128

amyeroberts's avatar
amyeroberts committed
129
    @unittest.skip
130
131
132
133
    def test_pretokenized_inputs(self, *args, **kwargs):
        # It's very difficult to mix/test pretokenization with byte-level
        # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
        pass
134
135
136

    def test_padding(self, max_length=15):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
137
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Simple input
                s = "This is a simple input"
                s2 = ["This is a simple input 1", "This is a simple input 2"]
                p = ("This is a simple input", "This is a pair")
                p2 = [
                    ("This is a simple input 1", "This is a simple input 2"),
                    ("This is a simple pair 1", "This is a simple pair 2"),
                ]

                # Simple input tests
                self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    s2,
                    max_length=max_length,
                    padding="max_length",
                )

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    p2,
                    max_length=max_length,
                    padding="max_length",
                )
178

Younes Belkada's avatar
Younes Belkada committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def test_padding_if_pad_token_set_slow(self):
        tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>")

        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input looooooooong", "This is a simple input"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input loooooong", "This is a simple input"),
            ("This is a simple pair loooooong", "This is a simple pair"),
        ]

        pad_token_id = tokenizer.pad_token_id

        out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np")
        out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np")
        out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np")
        out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np")

        # s
        # test single string max_length padding
        self.assertEqual(out_s["input_ids"].shape[-1], 30)
        self.assertTrue(pad_token_id in out_s["input_ids"])
        self.assertTrue(0 in out_s["attention_mask"])

        # s2
        # test automatic padding
        self.assertEqual(out_s2["input_ids"].shape[-1], 33)
        # long slice doesn't have padding
        self.assertFalse(pad_token_id in out_s2["input_ids"][0])
        self.assertFalse(0 in out_s2["attention_mask"][0])
        # short slice does have padding
        self.assertTrue(pad_token_id in out_s2["input_ids"][1])
        self.assertTrue(0 in out_s2["attention_mask"][1])

        # p
        # test single pair max_length padding
        self.assertEqual(out_p["input_ids"].shape[-1], 60)
        self.assertTrue(pad_token_id in out_p["input_ids"])
        self.assertTrue(0 in out_p["attention_mask"])

        # p2
        # test automatic padding pair
        self.assertEqual(out_p2["input_ids"].shape[-1], 52)
        # long slice pair doesn't have padding
        self.assertFalse(pad_token_id in out_p2["input_ids"][0])
        self.assertFalse(0 in out_p2["attention_mask"][0])
        # short slice pair does have padding
        self.assertTrue(pad_token_id in out_p2["input_ids"][1])
        self.assertTrue(0 in out_p2["attention_mask"][1])

    def test_add_bos_token_slow(self):
        bos_token = "$$$"
        tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True)

        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]

        bos_token_id = tokenizer.bos_token_id

        out_s = tokenizer(s)
        out_s2 = tokenizer(s2)

        self.assertEqual(out_s.input_ids[0], bos_token_id)
        self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids))

        decode_s = tokenizer.decode(out_s.input_ids)
        decode_s2 = tokenizer.batch_decode(out_s2.input_ids)

248
249
        self.assertTrue(decode_s.startswith(bos_token))
        self.assertTrue(all(d.startswith(bos_token) for d in decode_s2))
Younes Belkada's avatar
Younes Belkada committed
250

amyeroberts's avatar
amyeroberts committed
251
    @unittest.skip(reason="tokenizer has no padding token")
252
253
    def test_padding_different_model_input_name(self):
        pass
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    def test_special_tokens_mask_input_pairs_and_bos_token(self):
        # TODO: change to self.get_tokenizers() when the fast version is implemented
        tokenizers = [self.get_tokenizer(do_lower_case=False, add_bos_token=True)]
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                sequence_1 = "This one too please."
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    sequence_0,
                    sequence_1,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    @require_jinja
    def test_tokenization_for_chat(self):
        tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname)
        test_chats = [
            [{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}],
            [
                {"role": "system", "content": "You are a helpful chatbot."},
                {"role": "user", "content": "Hello!"},
                {"role": "assistant", "content": "Nice to meet you."},
            ],
            [{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}],
        ]
        tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
        # fmt: off
        expected_tokens = [[20, 1, 20, 10, 20, 4, 3, 10, 20, 10, 20, 3, 0, 20, 20, 20, 0, 10, 20, 20, 20, 6, 20, 1, 6, 20, 20, 20, 3, 0, 0, 1, 20, 20],
                          [20, 1, 20, 10, 20, 4, 3, 10, 20, 10, 20, 3, 0, 20, 20, 20, 0, 10, 20, 20, 20, 6, 20, 1, 6, 20, 20, 20, 3, 0, 0, 1, 20, 20, 20, 7, 20, 3, 10, 6, 1, 10, 20, 3, 3, 6, 10, 20, 1, 20, 20, 20],
                          [20, 7, 20, 3, 10, 6, 1, 10, 20, 3, 3, 6, 10, 20, 1, 20, 20, 20, 20, 3, 0, 0, 1, 20, 20]]
        # fmt: on
        for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
            self.assertListEqual(tokenized_chat, expected_tokens)

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

@require_tokenizers
class OPTTokenizationTest(unittest.TestCase):
    def test_serialize_deserialize_fast_opt(self):
        # More context:
        # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1
        # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519
        # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439

        tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True)
        text = "A photo of a cat"

        tokens_ids = tokenizer.encode(
            text,
        )
        self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])
        tokenizer.save_pretrained("test_opt")

        tokenizer = AutoTokenizer.from_pretrained("./test_opt")
        tokens_ids = tokenizer.encode(
            text,
        )
        self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])

    def test_fast_slow_equivalence(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", use_slow=True)
        text = "A photo of a cat"

        tokens_ids = tokenizer.encode(
            text,
        )
        # Same as above
        self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])

amyeroberts's avatar
amyeroberts committed
335
    @unittest.skip(reason="This test is failing because of a bug in the fast tokenizer")
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    def test_users_can_modify_bos(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True)

        tokenizer.bos_token = "bos"
        tokenizer.bos_token_id = tokenizer.get_vocab()["bos"]

        text = "A photo of a cat"
        tokens_ids = tokenizer.encode(
            text,
        )
        # We changed the bos token
        self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758])
        tokenizer.save_pretrained("./tok")
        tokenizer = AutoTokenizer.from_pretrained("./tok")
        self.assertTrue(tokenizer.is_fast)
        tokens_ids = tokenizer.encode(
            text,
        )
        self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758])