test_tokenization_fsmt.py 6.35 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
import unittest

Sylvain Gugger's avatar
Sylvain Gugger committed
21
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer
22
from transformers.testing_utils import slow
23
from transformers.utils import cached_property
24

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_tokenization_common import TokenizerTesterMixin
26
27


28
29
30
31
# using a different tiny model than the one used for default params defined in init to ensure proper testing
FSMT_TINY2 = "stas/tiny-wmt19-en-ru"


32
class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
33
    from_pretrained_id = "stas/tiny-wmt19-en-de"
34
    tokenizer_class = FSMTTokenizer
35
    test_rust_tokenizer = False
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    def setUp(self):
        super().setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "w</w>",
            "r</w>",
            "t</w>",
            "lo",
            "low",
            "er</w>",
            "low</w>",
            "lowest</w>",
            "newer</w>",
            "wider</w>",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]

        self.langs = ["en", "ru"]
        config = {
            "langs": self.langs,
            "src_vocab_size": 10,
            "tgt_vocab_size": 20,
        }

        self.src_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["src_vocab_file"])
        self.tgt_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["tgt_vocab_file"])
        config_file = os.path.join(self.tmpdirname, "tokenizer_config.json")
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.src_vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.tgt_vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.merges_file, "w") as fp:
            fp.write("\n".join(merges))
        with open(config_file, "w") as fp:
            fp.write(json.dumps(config))

    @cached_property
    def tokenizer_ru_en(self):
        return FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en")

    @cached_property
    def tokenizer_en_ru(self):
        return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru")

95
96
97
98
99
100
101
102
103
    def test_online_tokenizer_config(self):
        """this just tests that the online tokenizer files get correctly fetched and
        loaded via its tokenizer_config.json and it's not slow so it's run by normal CI
        """
        tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2)
        self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"])
        self.assertEqual(tokenizer.src_vocab_size, 21)
        self.assertEqual(tokenizer.tgt_vocab_size, 21)

104
    def test_full_tokenizer(self):
Patrick von Platen's avatar
Patrick von Platen committed
105
        """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt"""
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file)

        text = "lower"
        bpe_tokens = ["low", "er</w>"]
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + ["<unk>"]
        input_bpe_tokens = [14, 15, 20]
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)

    @slow
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_ru_en

        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        assert encoded_sentence == text + [2]
        assert encoded_pair == text + [2] + text_2 + [2]

    @slow
    def test_match_encode_decode(self):
        tokenizer_enc = self.tokenizer_en_ru
        tokenizer_dec = self.tokenizer_ru_en

        targets = [
            [
                "Here's a little song I wrote. Don't worry, be happy.",
                [2470, 39, 11, 2349, 7222, 70, 5979, 7, 8450, 1050, 13160, 5, 26, 6445, 7, 2],
            ],
            ["This is it. No more. I'm done!", [132, 21, 37, 7, 1434, 86, 7, 70, 6476, 1305, 427, 2]],
        ]

        # if data needs to be recreated or added, run:
        # import torch
        # model = torch.hub.load("pytorch/fairseq", "transformer.wmt19.en-ru", checkpoint_file="model4.pt", tokenizer="moses", bpe="fastbpe")
        # for src_text, _ in targets: print(f"""[\n"{src_text}",\n {model.encode(src_text).tolist()}\n],""")

        for src_text, tgt_input_ids in targets:
149
150
            encoded_ids = tokenizer_enc.encode(src_text, return_tensors=None)
            self.assertListEqual(encoded_ids, tgt_input_ids)
151
152

            # and decode backward, using the reversed languages model
153
            decoded_text = tokenizer_dec.decode(encoded_ids, skip_special_tokens=True)
154
155
            self.assertEqual(decoded_text, src_text)

156
157
158
159
160
161
162
    @slow
    def test_tokenizer_lower(self):
        tokenizer = FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en", do_lower_case=True)
        tokens = tokenizer.tokenize("USA is United States of America")
        expected = ["us", "a</w>", "is</w>", "un", "i", "ted</w>", "st", "ates</w>", "of</w>", "am", "er", "ica</w>"]
        self.assertListEqual(tokens, expected)

amyeroberts's avatar
amyeroberts committed
163
    @unittest.skip(reason="FSMTConfig.__init__  requires non-optional args")
164
165
166
    def test_torch_encode_plus_sent_to_model(self):
        pass

amyeroberts's avatar
amyeroberts committed
167
    @unittest.skip(reason="FSMTConfig.__init__  requires non-optional args")
168
169
    def test_np_encode_plus_sent_to_model(self):
        pass