test_modeling_esm.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch ESM model."""
16
17
18
19

import unittest

from transformers import EsmConfig, is_torch_available
20
from transformers.testing_utils import TestCasePlus, require_bitsandbytes, require_torch, slow, torch_device
21
22
23

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
24
from ...test_pipeline_mixin import PipelineTesterMixin
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


if is_torch_available():
    import torch

    from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
    from transformers.models.esm.modeling_esm import (
        EsmEmbeddings,
        create_position_ids_from_input_ids,
    )


# copied from tests.test_modeling_roberta
class EsmModelTester:
    def __init__(
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
42
43
44
45
46
47
48
49
        batch_size=13,
        seq_length=7,
        is_training=False,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=33,
        hidden_size=32,
50
        num_hidden_layers=2,
Yih-Dar's avatar
Yih-Dar committed
51
52
53
54
55
56
57
58
59
60
61
62
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
63
64
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return EsmConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            pad_token_id=1,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
        model = EsmModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = EsmForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = EsmForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def create_and_check_forward_and_backwards(
        self,
        config,
        input_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        gradient_checkpointing=False,
    ):
        model = EsmForMaskedLM(config)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
        model.to(torch_device)
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
185
class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
186
187
188
189
190
191
192
193
194
195
196
197
198
    test_mismatched_shapes = False

    all_model_classes = (
        (
            EsmForMaskedLM,
            EsmModel,
            EsmForSequenceClassification,
            EsmForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = ()
199
200
201
202
203
204
205
206
207
208
209
    pipeline_model_mapping = (
        {
            "feature-extraction": EsmModel,
            "fill-mask": EsmForMaskedLM,
            "text-classification": EsmForSequenceClassification,
            "token-classification": EsmForTokenClassification,
            "zero-shot": EsmForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
210
    test_sequence_classification_problem_types = True
211
    model_split_percents = [0.5, 0.8, 0.9]
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    def setUp(self):
        self.model_tester = EsmModelTester(self)
        self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

238
239
240
241
    def test_esm_gradient_checkpointing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)

242
243
    @slow
    def test_model_from_pretrained(self):
244
245
246
        model_name = "facebook/esm2_t6_8M_UR50D"
        model = EsmModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
247
248

    def test_create_position_ids_respects_padding_index(self):
249
        """This is a regression test for https://github.com/huggingface/transformers/issues/1761
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is EsmEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = EsmEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
        expected_positions = torch.as_tensor(
            [
                [
                    0 + model.padding_idx + 1,
                    1 + model.padding_idx + 1,
                    2 + model.padding_idx + 1,
                    model.padding_idx,
                ]
            ]
        )
        position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
273
        """This is a regression test for https://github.com/huggingface/transformers/issues/1761
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is EsmEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        embeddings = EsmEmbeddings(config=config)

        inputs_embeds = torch.empty(2, 4, 30)
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

amyeroberts's avatar
amyeroberts committed
293
    @unittest.skip(reason="Esm does not support embedding resizing")
Matt's avatar
Matt committed
294
295
296
    def test_resize_embeddings_untied(self):
        pass

amyeroberts's avatar
amyeroberts committed
297
    @unittest.skip(reason="Esm does not support embedding resizing")
Matt's avatar
Matt committed
298
299
300
    def test_resize_tokens_embeddings(self):
        pass

301

302
@slow
303
304
305
@require_torch
class EsmModelIntegrationTest(TestCasePlus):
    def test_inference_masked_lm(self):
Matt's avatar
Matt committed
306
        with torch.no_grad():
Matt's avatar
Matt committed
307
            model = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D")
Matt's avatar
Matt committed
308
309
310
            model.eval()
            input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
            output = model(input_ids)[0]
311

Matt's avatar
Matt committed
312
            vocab_size = 33
313

Matt's avatar
Matt committed
314
315
            expected_shape = torch.Size((1, 6, vocab_size))
            self.assertEqual(output.shape, expected_shape)
316

Matt's avatar
Matt committed
317
            expected_slice = torch.tensor(
Matt's avatar
Matt committed
318
                [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]]
Matt's avatar
Matt committed
319
320
            )
            self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
321
322

    def test_inference_no_head(self):
Matt's avatar
Matt committed
323
        with torch.no_grad():
Matt's avatar
Matt committed
324
            model = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D")
Matt's avatar
Matt committed
325
326
327
328
329
330
331
332
333
            model.eval()

            input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
            output = model(input_ids)[0]
            # compare the actual values for a slice.
            expected_slice = torch.tensor(
                [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]]
            )
            self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    @require_bitsandbytes
    def test_inference_bitsandbytes(self):
        model = EsmForMaskedLM.from_pretrained("facebook/esm2_t36_3B_UR50D", load_in_8bit=True)

        input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
        # Just test if inference works
        with torch.no_grad():
            _ = model(input_ids)[0]

        model = EsmForMaskedLM.from_pretrained("facebook/esm2_t36_3B_UR50D", load_in_4bit=True)

        input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
        # Just test if inference works
        _ = model(input_ids)[0]