test_feature_extraction_segformer.py 11.2 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision

from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import SegformerFeatureExtractor


class SegformerFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        keep_ratio=True,
        image_scale=[100, 20],
        align=True,
        size_divisor=10,
        do_random_crop=True,
        crop_size=[20, 20],
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
        do_pad=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.keep_ratio = keep_ratio
        self.image_scale = image_scale
        self.align = align
        self.size_divisor = size_divisor
        self.do_random_crop = do_random_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_pad = do_pad

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "keep_ratio": self.keep_ratio,
            "image_scale": self.image_scale,
            "align": self.align,
            "size_divisor": self.size_divisor,
            "do_random_crop": self.do_random_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_pad": self.do_pad,
        }


@require_torch
@require_vision
class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = SegformerFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = SegformerFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "keep_ratio"))
        self.assertTrue(hasattr(feature_extractor, "image_scale"))
        self.assertTrue(hasattr(feature_extractor, "align"))
        self.assertTrue(hasattr(feature_extractor, "size_divisor"))
        self.assertTrue(hasattr(feature_extractor, "do_random_crop"))
        self.assertTrue(hasattr(feature_extractor, "crop_size"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_pad"))

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size,
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size[::-1],
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size[::-1],
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size[::-1],
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size[::-1],
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size[::-1],
            ),
        )

    def test_resize(self):
        # Initialize feature_extractor: version 1 (no align, keep_ratio=True)
        feature_extractor = SegformerFeatureExtractor(
            image_scale=(1333, 800), align=False, do_random_crop=False, do_pad=False
        )

        # Create random PyTorch tensor
        image = torch.randn((3, 288, 512))

        # Verify shape
        encoded_images = feature_extractor(image, return_tensors="pt").pixel_values
        expected_shape = (1, 3, 750, 1333)
        self.assertEqual(encoded_images.shape, expected_shape)

        # Initialize feature_extractor: version 2 (keep_ratio=False)
        feature_extractor = SegformerFeatureExtractor(
            image_scale=(1280, 800), align=False, keep_ratio=False, do_random_crop=False, do_pad=False
        )

        # Verify shape
        encoded_images = feature_extractor(image, return_tensors="pt").pixel_values
        expected_shape = (1, 3, 800, 1280)
        self.assertEqual(encoded_images.shape, expected_shape)

    def test_aligned_resize(self):
        # Initialize feature_extractor: version 1
        feature_extractor = SegformerFeatureExtractor(do_random_crop=False, do_pad=False)
        # Create random PyTorch tensor
        image = torch.randn((3, 256, 304))

        # Verify shape
        encoded_images = feature_extractor(image, return_tensors="pt").pixel_values
        expected_shape = (1, 3, 512, 608)
        self.assertEqual(encoded_images.shape, expected_shape)

        # Initialize feature_extractor: version 2
        feature_extractor = SegformerFeatureExtractor(image_scale=(1024, 2048), do_random_crop=False, do_pad=False)
        # create random PyTorch tensor
        image = torch.randn((3, 1024, 2048))

        # Verify shape
        encoded_images = feature_extractor(image, return_tensors="pt").pixel_values
        expected_shape = (1, 3, 1024, 2048)
        self.assertEqual(encoded_images.shape, expected_shape)

    def test_random_crop(self):
        from datasets import load_dataset

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

        image = Image.open(ds[0]["file"])
        segmentation_map = Image.open(ds[1]["file"])

        w, h = image.size

        # Initialize feature_extractor
        feature_extractor = SegformerFeatureExtractor(crop_size=[w - 20, h - 20], do_pad=False)

        # Encode image + segmentation map
        encoded_images = feature_extractor(images=image, segmentation_maps=segmentation_map, return_tensors="pt")

        # Verify shape of pixel_values
        self.assertEqual(encoded_images.pixel_values.shape[-2:], (h - 20, w - 20))

        # Verify shape of labels
        self.assertEqual(encoded_images.labels.shape[-2:], (h - 20, w - 20))

    def test_pad(self):
        # Initialize feature_extractor (note that padding should only be applied when random cropping)
        feature_extractor = SegformerFeatureExtractor(
            align=False, do_random_crop=True, crop_size=self.feature_extract_tester.crop_size, do_pad=True
        )
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size[::-1],
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                *self.feature_extract_tester.crop_size[::-1],
            ),
        )