test_retrieval_rag.py 14.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Ola Piktus's avatar
Ola Piktus committed
15
16
17
18
19
20
21
22
23
24
import json
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch

import numpy as np
from datasets import Dataset

25
from transformers import is_faiss_available
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
Shamane Siri's avatar
Shamane Siri committed
30
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
34
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
Ola Piktus's avatar
Ola Piktus committed
35
36


37
38
39
40
if is_faiss_available():
    import faiss


Ola Piktus's avatar
Ola Piktus committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
@require_faiss
class RagRetrieverTest(TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        self.retrieval_vector_size = 8

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

Shamane Siri's avatar
Shamane Siri committed
110
111
112
    def get_dpr_ctx_encoder_tokenizer(self) -> DPRContextEncoderTokenizer:
        return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

Ola Piktus's avatar
Ola Piktus committed
113
114
115
116
117
118
    def get_bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

119
    def get_dummy_dataset(self):
Ola Piktus's avatar
Ola Piktus committed
120
121
122
123
124
125
126
127
128
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1"],
                "text": ["foo", "bar"],
                "title": ["Foo", "Bar"],
                "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)],
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
129
130
131
132
        return dataset

    def get_dummy_canonical_hf_index_retriever(self):
        dataset = self.get_dummy_dataset()
Ola Piktus's avatar
Ola Piktus committed
133
134
135
136
137
        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
138
        with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
Ola Piktus's avatar
Ola Piktus committed
139
140
141
142
143
144
145
146
            mock_load_dataset.return_value = dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
            )
        return retriever

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def get_dummy_custom_hf_index_retriever(self, from_disk: bool):
        dataset = self.get_dummy_dataset()
        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
            index_name="custom",
        )
        if from_disk:
            config.passages_path = os.path.join(self.tmpdirname, "dataset")
            config.index_path = os.path.join(self.tmpdirname, "index.faiss")
            dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
            dataset.drop_index("embeddings")
            dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
            del dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
            )
        else:
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
                index=CustomHFIndex(config.retrieval_vector_size, dataset),
            )
        return retriever

    def test_canonical_hf_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_canonical_hf_index_retriever()
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])

    def test_canonical_hf_index_retriever_save_and_from_pretrained(self):
        retriever = self.get_dummy_canonical_hf_index_retriever()
        with tempfile.TemporaryDirectory() as tmp_dirname:
Sylvain Gugger's avatar
Sylvain Gugger committed
194
            with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
                mock_load_dataset.return_value = self.get_dummy_dataset()
                retriever.save_pretrained(tmp_dirname)
                retriever = RagRetriever.from_pretrained(tmp_dirname)
                self.assertIsInstance(retriever, RagRetriever)
                hidden_states = np.array(
                    [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
                )
                out = retriever.retrieve(hidden_states, n_docs=1)
                self.assertTrue(out is not None)

    def test_custom_hf_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False)
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])

    def test_custom_hf_index_retriever_save_and_from_pretrained(self):
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False)
        with tempfile.TemporaryDirectory() as tmp_dirname:
            retriever.save_pretrained(tmp_dirname)
            retriever = RagRetriever.from_pretrained(tmp_dirname)
            self.assertIsInstance(retriever, RagRetriever)
            hidden_states = np.array(
                [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
            )
            out = retriever.retrieve(hidden_states, n_docs=1)
            self.assertTrue(out is not None)

    def test_custom_hf_index_retriever_retrieve_from_disk(self):
Ola Piktus's avatar
Ola Piktus committed
233
        n_docs = 1
234
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=True)
Ola Piktus's avatar
Ola Piktus committed
235
236
237
238
239
240
241
242
243
244
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
245
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])
Ola Piktus's avatar
Ola Piktus committed
246

247
248
    def test_custom_hf_index_retriever_save_and_from_pretrained_from_disk(self):
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=True)
249
250
        with tempfile.TemporaryDirectory() as tmp_dirname:
            retriever.save_pretrained(tmp_dirname)
251
252
253
254
255
256
257
258
            retriever = RagRetriever.from_pretrained(tmp_dirname)
            self.assertIsInstance(retriever, RagRetriever)
            hidden_states = np.array(
                [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
            )
            out = retriever.retrieve(hidden_states, n_docs=1)
            self.assertTrue(out is not None)

Ola Piktus's avatar
Ola Piktus committed
259
    @require_torch
260
261
    @require_tokenizers
    @require_sentencepiece
Ola Piktus's avatar
Ola Piktus committed
262
263
264
265
    def test_hf_index_retriever_call(self):
        import torch

        n_docs = 1
266
        retriever = self.get_dummy_canonical_hf_index_retriever()
Ola Piktus's avatar
Ola Piktus committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        question_input_ids = [[5, 7], [10, 11]]
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        out = retriever(question_input_ids, hidden_states, prefix=retriever.config.generator.prefix, n_docs=n_docs)
        context_input_ids, context_attention_mask, retrieved_doc_embeds = (
            out["context_input_ids"],
            out["context_attention_mask"],
            out["retrieved_doc_embeds"],
        )
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertIsInstance(context_input_ids, list)
        self.assertIsInstance(context_attention_mask, list)
        self.assertIsInstance(retrieved_doc_embeds, np.ndarray)

        out = retriever(
            question_input_ids,
            hidden_states,
            prefix=retriever.config.generator.prefix,
            n_docs=n_docs,
            return_tensors="pt",
        )
        context_input_ids, context_attention_mask, retrieved_doc_embeds, doc_ids = (  # noqa: F841
            out["context_input_ids"],
            out["context_attention_mask"],
            out["retrieved_doc_embeds"],
            out["doc_ids"],
        )
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertIsInstance(context_input_ids, torch.Tensor)
        self.assertIsInstance(context_attention_mask, torch.Tensor)
        self.assertIsInstance(retrieved_doc_embeds, torch.Tensor)
Shamane Siri's avatar
Shamane Siri committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    @require_torch
    @require_tokenizers
    @require_sentencepiece
    def test_custom_hf_index_end2end_retriever_call(self):
        context_encoder_tokenizer = self.get_dpr_ctx_encoder_tokenizer()
        n_docs = 1
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False)
        retriever.set_ctx_encoder_tokenizer(context_encoder_tokenizer)

        question_input_ids = [[5, 7], [10, 11]]
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        out = retriever(question_input_ids, hidden_states, prefix=retriever.config.generator.prefix, n_docs=n_docs)

        self.assertEqual(
            len(out), 6
        )  # check whether the retriever output consist of 6 attributes including tokenized docs
        self.assertEqual(
            all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask")), True
        )  # check for doc token related keys in dictionary.