test_modeling_tf_esm.py 11.4 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


Matt's avatar
Matt committed
17
18
from __future__ import annotations

Matt's avatar
Matt committed
19
20
21
22
23
24
25
import unittest

from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
Matt's avatar
Matt committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


if is_tf_available():
    import numpy
    import tensorflow as tf

    from transformers.models.esm.modeling_tf_esm import (
        TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
        TFEsmForMaskedLM,
        TFEsmForSequenceClassification,
        TFEsmForTokenClassification,
        TFEsmModel,
    )


# copied from tests.test_modeling_tf_roberta
class TFEsmModelTester:
    def __init__(
        self,
        parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
56
        self.num_hidden_layers = 2
Matt's avatar
Matt committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = EsmConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            pad_token_id=1,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
        model = TFEsmModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFEsmModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs, encoder_hidden_states=encoder_hidden_states)

        # Also check the case where encoder outputs are not passed
        result = model(input_ids, attention_mask=input_mask)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFEsmForMaskedLM(config=config)
        result = model([input_ids, input_mask])
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFEsmForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_tf
200
class TFEsmModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Matt's avatar
Matt committed
201
202
203
204
205
206
207
208
209
210
    all_model_classes = (
        (
            TFEsmModel,
            TFEsmForMaskedLM,
            TFEsmForSequenceClassification,
            TFEsmForTokenClassification,
        )
        if is_tf_available()
        else ()
    )
211
212
213
214
215
216
217
218
219
220
221
    pipeline_model_mapping = (
        {
            "feature-extraction": TFEsmModel,
            "fill-mask": TFEsmForMaskedLM,
            "text-classification": TFEsmForSequenceClassification,
            "token-classification": TFEsmForTokenClassification,
            "zero-shot": TFEsmForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
Matt's avatar
Matt committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFEsmModelTester(self)
        self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        """Test the base model"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_as_decoder(self):
        """Test the base model as a decoder (of an encoder-decoder architecture)

        is_deocder=True + cross_attention + pass encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFEsmModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    @unittest.skip("Protein models do not support embedding resizing.")
    def test_resize_token_embeddings(self):
        pass

    @unittest.skip("Protein models do not support embedding resizing.")
    def test_save_load_after_resize_token_embeddings(self):
        pass

Matt's avatar
Matt committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
            if model_class is TFEsmForMaskedLM:
                # Output embedding test differs from the main test because they're a matrix, not a layer
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

Matt's avatar
Matt committed
285
286
287

@require_tf
class TFEsmModelIntegrationTest(unittest.TestCase):
Matt's avatar
Matt committed
288
    @slow
Matt's avatar
Matt committed
289
    def test_inference_masked_lm(self):
Matt's avatar
Matt committed
290
        model = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D")
Matt's avatar
Matt committed
291
292
293
294
295
296
297

        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]
        expected_shape = [1, 6, 33]
        self.assertEqual(list(output.numpy().shape), expected_shape)
        # compare the actual values for a slice.
        expected_slice = tf.constant(
Matt's avatar
Matt committed
298
299
            [
                [
300
301
302
                    [8.921518, -10.589814, -6.4671307],
                    [-6.3967156, -13.911377, -1.1211915],
                    [-7.781247, -13.951557, -3.740592],
Matt's avatar
Matt committed
303
304
                ]
            ]
Matt's avatar
Matt committed
305
        )
306
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-2))
Matt's avatar
Matt committed
307

Matt's avatar
Matt committed
308
    @slow
Matt's avatar
Matt committed
309
    def test_inference_no_head(self):
Matt's avatar
Matt committed
310
        model = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D")
Matt's avatar
Matt committed
311
312
313
314
315
316
317

        input_ids = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = tf.constant(
            [
                [
318
319
320
                    [0.14443092, 0.54125327, 0.3247739],
                    [0.30340484, 0.00526676, 0.31077722],
                    [0.32278043, -0.24987096, 0.3414628],
Matt's avatar
Matt committed
321
322
323
324
                ]
            ]
        )
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))