modeling_dilbert.py 14.6 KB
Newer Older
VictorSanh's avatar
wip  
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch DilBERT model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import sys
from io import open

import itertools
import numpy as np

import torch
import torch.nn as nn

from pytorch_transformers.modeling_utils import PretrainedConfig, PreTrainedModel, add_start_docstrings

import logging
logger = logging.getLogger(__name__)


DILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'dilbert-base-uncased': None, # TODO(Victor)
}

DILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'dilbert-base-uncased': None, #TODO(Victor)
}


class DilBertconfig(PretrainedConfig):
    pretrained_config_archive_map = DILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 max_position_embeddings=512,
                 sinusoidal_pos_embds=True,
                 n_layers=6,
                 n_heads=12,
                 dim=768,
                 dropout=0.1,
                 attention_dropout=0.1,
                 activation='gelu',
                 initializer_range=0.02,
                 tie_weights=True,
                 **kwargs):
        super(DilBertconfig, self).__init__(**kwargs)

        if isintance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.max_position_embeddings = max_position_embeddings
            self.sinusoidal_pos_embds = sinusoidal_pos_embds
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dim = dim
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.activation = activation
            self.initializer_range = initializer_range
            self.tie_weights = tie_weights
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


def gelu(x):
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False

class Embeddings(nn.Module):
    def __init__(self,
                 config):
        super(Embeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, dim, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
        if sinusoidal_pos_embds:
            create_sinusoidal_embeddings(n_pos=config.max_position_embeddings,
                                         dim=config.dim,
                                         out=self.position_embeddings.weight)

        self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, input_ids):
        """
        Parameters
        ----------
        input_ids: torch.tensor(bs, max_seq_length) - The token ids to embed.
        """
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)                      # (bs, max_seq_length)

        word_embeddings = self.word_embeddings(input_ids)                   # (bs, max_seq_length, dim)
        position_embeddings = self.position_embeddings(position_ids)        # (bs, max_seq_length, dim)

        embeddings = word_embeddings + position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

class MultiHeadSelfAttention(nn.Module):
    def __init__(self,
                 config):
        super(MultiHeadSelfAttention, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = nn.Dropout(p=config.attention_dropout)
        self.output_attentions = config.output_attentions

        assert self.dim % self.n_heads == 0

        self.q_lin = nn.Linear(in_features=dim, out_features=dim)
        self.k_lin = nn.Linear(in_features=dim, out_features=dim)
        self.v_lin = nn.Linear(in_features=dim, out_features=dim)
        self.out_lin = nn.Linear(in_features=dim, out_features=dim)

    def forward(self,
                query: torch.tensor,
                key: torch.tensor,
                value: torch.tensor,
                mask: torch.tensor):
        """
        Classic Self Attention. I don't understand the one of PyTorch...

        Parameters
        ----------
        query: torch.tensor(bs, seq_length, dim)
        key: torch.tensor(bs, seq_length, dim)
        value: torch.tensor(bs, seq_length, dim)
        mask: torch.tensor(bs, seq_length)

        Return
        ------
        weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            Attention weights
        context: torch.tensor(bs, seq_length, dim)
            Contextualized layer
        """
        bs, q_length, dim = query.size()
        k_length = key.size(1)
        assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        assert key.size() == value.size()

        dim_per_head = dim // self.n_heads

        assert 2 <= mask.dim() <= 3
        causal = (mask.dim() == 3)
        mask_reshp = (bs, 1, 1, k_length)

        def shape(x):
            """ separate heads """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """ group heads """
            return x.transpose(1, 2).contiguous().view(bs, -1, dim)

        q = shape(self.q_lin(query))           # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))             # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))           # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)                     # (bs, n_heads, q_length, dim_per_head)
        scores = torch.matmul(q, k.transpose(2,3))          # (bs, n_heads, q_length, k_length)
        mask = (mask==0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
        scores.masked_fill_(mask, -float('inf'))            # (bs, n_heads, q_length, k_length)

        weights = nn.Softmax(dim=-1)(scores)   # (bs, n_heads, q_length, k_length)
        weights = self.dropout(weights)        # (bs, n_heads, q_length, k_length)
        context = torch.matmul(weights, v)     # (bs, n_heads, q_length, dim_per_head)
        context = unshape(context)             # (bs, q_length, dim)
        context = self.out_lin(context)        # (bs, q_length, dim)

        if self.output_attentions:
            return context, weights
        else:
            return context

class FFN(nn.Module):
    def __init__(self,
                 config):
        super(FFN, self).__init__()
        self.dropout = nn.Dropout(p=config.dropout)
        self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
        self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
        assert activation in ['relu', 'gelu'], ValueError(f"activation ({config.activation}) must be in ['relu', 'gelu']")
        self.activation = gelu if activation == 'gelu' else nn.ReLU()

    def forward(self,
                input: torch.tensor):
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x)
        return x

class TransformerBlock(nn.Module):
    def __init__(self,
                 config):
        super(TransformerBlock, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.hidden_dim = config.hidden_dim
        self.dropout = nn.Dropout(p=config.dropout)
        self.activation = config.activation
        self.output_attentions = config.output_attentions

        assert dim % n_heads == 0

        self.attention = MultiHeadSelfAttention(dim=config.dim,
                                                n_heads=config.n_heads,
                                                dropout=config.attention_dropout,
                                                output_attentions=config.output_attentions)
        self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

        self.ffn = FFN(in_dim=config.dim,
                       hidden_dim=config.hidden_dim,
                       out_dim=config.dim,
                       dropout=config.dropout,
                       activation=config.activation)
        self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

    def forward(self,
                x: torch.tensor,
                attn_mask: torch.tensor = None):
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
        attn_mask: torch.tensor(bs, seq_length)
        """
        # Self-Attention
        sa_output = self.attention(query=x, key=x, value=x, mask=attn_mask)
        if self.output_attentions:
            sa_output, sa_weights = sa_output                  # (bs, seq_length, dim)
        sa_output = self.sa_layer_norm(sa_output + x)          # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output)                             # (bs, seq_length, dim)
        ffn_output = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

        if self.output_attentions:
            return sa_weights, ffn_output
        else:
            return ffn_output

class Transformer(nn.Module):
    def __init__(self,
                 config):
        super(Transformer, self).__init__()
        self.n_layers = config.n_layers
        self.output_attentions = config.output_attentions

        layer = TransformerBlock(n_heads=config.n_heads,
                                 dim=config.dim,
                                 hidden_dim=config.hidden_dim,
                                 dropout=config.dropout,
                                 attention_dropout=config.attention_dropout,
                                 activation=config.activation,
                                 output_attentions=config.output_attentions)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layers)])

    def forward(self,
                x: torch.tensor,
                attn_mask: torch.tensor = None,
                output_all_encoded_layers: bool = True):
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
        attn_mask: torch.tensor(bs, seq_length)
        output_all_encoded_layers: bool
        """
        all_encoder_layers = []
        all_attentions = []

        for _, layer_module in enumerate(self.layer):
            x = layer_module(x=x, attn_mask=attn_mask)
            if self.output_attentions:
                attentions, x = x
                all_attentions.append(attentions)
            all_encoder_layers.append(x)

        if not output_all_encoded_layers:
            all_encoder_layers = all_encoder_layers[-1]

        if self.output_attentions:
            return all_attentions, all_encoder_layers
        else:
            return all_encoder_layers



# TODO(Victor)
# class DilBertWithLMHeadModel(DilBertPreTrainedModel):
# class DilBertForSequenceClassification(DilBertPretrainedModel):


class DilBertForQuestionAnswering(DilBertPreTrainedModel):
    def __init__(self, config):
        super(DilBertForQuestionAnswering, self).__init__(config)

        self.dilbert = DilBertModel(config)
        self.qa_outputs = nn.Linear(config.dim, config.num_labels)
        assert config.num_labels == 2
        self.dropout = nn.Dropout(config.qa_dropout)

        self.apply(self.init_weights)
        
    def forward(self,
                input_ids: torch.tensor,
                attention_mask: torch.tensor = None,
                start_positions: torch.tensor = None,
                end_positions: torch.tensor = None):
        _, _, hidden_states = self.dilbert(input_ids=input_ids,
                                           attention_mask=attention_mask) # _, _, (bs, max_query_len, dim)
        
        hidden_states = self.dropout(hidden_states)                       # (bs, max_query_len, dim)
        logits = self.qa_outputs(hidden_states)                           # (bs, max_query_len, 2)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)                           # (bs, max_query_len)
        end_logits = end_logits.squeeze(-1)                               # (bs, max_query_len)

        outputs = (start_logits, end_logits,) + (hidden_states,)
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

        return outputs  # (loss), start_logits, end_logits, hidden_states