save_len_file.py 2.06 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

16
17
18
19
20
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm

from transformers import AutoTokenizer
21
from utils import Seq2SeqDataset, pickle_save
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


def save_len_file(
    tokenizer_name, data_dir, max_source_length=1024, max_target_length=1024, consider_target=False, **kwargs
):
    """Save max(src_len, tgt_len) for each example to allow dynamic batching."""
    tok = AutoTokenizer.from_pretrained(tokenizer_name)
    train_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="train", **kwargs)
    pad = tok.pad_token_id

    def get_lens(ds):
        dl = tqdm(
            DataLoader(ds, batch_size=512, num_workers=8, shuffle=False, collate_fn=ds.collate_fn),
            desc=str(ds.len_file),
        )
        max_lens = []
        for batch in dl:
            src_lens = batch["input_ids"].ne(pad).sum(1).tolist()
            tgt_lens = batch["labels"].ne(pad).sum(1).tolist()
            if consider_target:
                for src, tgt in zip(src_lens, tgt_lens):
                    max_lens.append(max(src, tgt))
            else:
                max_lens.extend(src_lens)
        return max_lens

    train_lens = get_lens(train_ds)
    val_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="val", **kwargs)
    val_lens = get_lens(val_ds)
    pickle_save(train_lens, train_ds.len_file)
    pickle_save(val_lens, val_ds.len_file)


if __name__ == "__main__":
    fire.Fire(save_len_file)