test_modeling_clip.py 47.6 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch CLIP model."""
Suraj Patil's avatar
Suraj Patil committed
16
17
18
19
20

import inspect
import os
import tempfile
import unittest
21
from typing import Optional, Tuple
Suraj Patil's avatar
Suraj Patil committed
22

23
import numpy as np
Suraj Patil's avatar
Suraj Patil committed
24
import requests
25
26
from parameterized import parameterized
from pytest import mark
27

28
import transformers
29
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
30
31
32
from transformers.testing_utils import (
    is_flax_available,
    is_pt_flax_cross_test,
33
    require_flash_attn,
34
    require_torch,
35
36
    require_torch_gpu,
    require_torch_sdpa,
37
38
39
40
    require_vision,
    slow,
    torch_device,
)
41
42
43
44
45
46
47
from transformers.utils import (
    is_torch_available,
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
    is_torch_sdpa_available,
    is_vision_available,
)
Suraj Patil's avatar
Suraj Patil committed
48

Yih-Dar's avatar
Yih-Dar committed
49
50
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
51
52
53
54
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
55
    is_flaky,
56
57
    random_attention_mask,
)
58
from ...test_pipeline_mixin import PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
59
60
61
62


if is_torch_available():
    import torch
63
    from torch import nn
Suraj Patil's avatar
Suraj Patil committed
64

65
    from transformers import (
66
        CLIPForImageClassification,
67
68
69
70
71
72
        CLIPModel,
        CLIPTextModel,
        CLIPTextModelWithProjection,
        CLIPVisionModel,
        CLIPVisionModelWithProjection,
    )
Suraj Patil's avatar
Suraj Patil committed
73
74


75
76
77
78
if is_torch_sdpa_available():
    from torch.nn.attention import SDPBackend, sdpa_kernel


Suraj Patil's avatar
Suraj Patil committed
79
80
81
82
83
84
if is_vision_available():
    from PIL import Image

    from transformers import CLIPProcessor


85
86
if is_flax_available():
    import jax.numpy as jnp
87

88
89
90
91
92
93
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )


Suraj Patil's avatar
Suraj Patil committed
94
95
96
97
98
99
100
101
102
103
class CLIPVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=32,
104
        projection_dim=32,
105
        num_hidden_layers=2,
Suraj Patil's avatar
Suraj Patil committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
120
        self.projection_dim = projection_dim
Suraj Patil's avatar
Suraj Patil committed
121
122
123
124
125
126
127
128
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

NielsRogge's avatar
NielsRogge committed
129
130
131
132
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

Suraj Patil's avatar
Suraj Patil committed
133
134
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
135
136
137
138
139
140
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return CLIPVisionConfig(
Suraj Patil's avatar
Suraj Patil committed
141
142
143
144
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
145
            projection_dim=self.projection_dim,
Suraj Patil's avatar
Suraj Patil committed
146
147
148
149
150
151
152
153
154
155
156
157
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = CLIPVisionModel(config=config)
        model.to(torch_device)
        model.eval()
Suraj Patil's avatar
Suraj Patil committed
158
159
        with torch.no_grad():
            result = model(pixel_values)
Suraj Patil's avatar
Suraj Patil committed
160
161
162
163
164
165
166
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

167
168
169
170
171
172
173
174
175
176
177
178
179
    def create_and_check_model_with_projection(self, config, pixel_values):
        model = CLIPVisionModelWithProjection(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
        self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim))

Suraj Patil's avatar
Suraj Patil committed
180
181
182
183
184
185
186
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
class CLIPModelTesterMixin(ModelTesterMixin):
    """
    Subclass of ModelTesterMixin with methods specific to testing CLIP models.
    The SDPA equivalence test is overridden here because CLIP models may have test/vision/text+vision inputs,
    different output logits, and are not supposed to be used or tested with padding_side="left".
    """

    def test_eager_matches_sdpa_inference(
        self,
        torch_dtype: str,
        use_attention_mask_options: Tuple[Optional[str], ...] = (None, "left", "right"),
        logit_keys: Tuple[str, ...] = ("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
    ):
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )

        # Convert to torch dtype
        dtypes = {
            "float16": torch.float16,
            "bfloat16": torch.bfloat16,
            "float32": torch.float32,
        }
        torch_dtype = dtypes[torch_dtype]

        atols = {
            torch.float32: 1e-5,
            torch.bfloat16: 3e-2,
            torch.float16: 5e-3,
        }
        rtols = {
            torch.float32: 1e-4,
            torch.bfloat16: 3e-2,
            torch.float16: 5e-3,
        }

        atol = atols[torch_dtype]
        rtol = rtols[torch_dtype]

        def get_mean_reldiff(msg, current_case, x, ref, atol, rtol):
            return f"{msg} {current_case}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                # Load the model with SDPA
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                # Load model with eager attention
                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

            self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
            self.assertTrue(model_eager.config._attn_implementation == "eager")

            for name, submodule in model_eager.named_modules():
                class_name = submodule.__class__.__name__
                if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
                    raise ValueError("The eager model should not have SDPA attention layers")

            has_sdpa = False
            for name, submodule in model_sdpa.named_modules():
                class_name = submodule.__class__.__name__
                if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
                    has_sdpa = True
                    break

            if not has_sdpa:
                raise ValueError("The SDPA model should have SDPA attention layers")

            # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving the model each time,
            # but it would be nicer to have an efficient way to use parameterized.expand
            cases = [
                (use_mask, output_attentions, sdpa_backend, batch_size)
                for use_mask in use_attention_mask_options
                for output_attentions in [True, False]
                for sdpa_backend in [
                    [SDPBackend.MATH],
                    [SDPBackend.FLASH_ATTENTION, SDPBackend.MATH],
                    [SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
                    [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
                ]
                for batch_size in [1, 5]
            ]
            fail_cases = []

            for use_mask, output_attentions, sdpa_backend, batch_size in cases:
                processed_inputs = inputs_dict.copy()

                # convert to torch_dtype
                if "pixel_values" in processed_inputs:
                    processed_inputs["pixel_values"] = processed_inputs["pixel_values"].to(torch_dtype)

                # slice for different batch sizes
                for key in ["pixel_values", "input_ids", "attention_mask"]:
                    if key in processed_inputs:
                        processed_inputs[key] = processed_inputs[key][:batch_size]

                # set attention mask with left padding
                if not use_mask:
                    processed_inputs.pop("attention_mask", None)
                elif use_mask == "left":
                    dummy_attention_mask = processed_inputs["attention_mask"]
                    dummy_attention_mask[:] = 1
                    dummy_attention_mask[:, :1] = 0
                    processed_inputs["attention_mask"] = dummy_attention_mask
                elif use_mask == "right":
                    dummy_attention_mask = processed_inputs["attention_mask"]
                    dummy_attention_mask[:] = 1
                    dummy_attention_mask[:, -1:] = 0
                    processed_inputs["attention_mask"] = dummy_attention_mask
                else:
                    raise ValueError(f"Invalid value for use_mask={use_mask}")

                processed_inputs["output_attentions"] = output_attentions
                processed_inputs["output_hidden_states"] = True

                current_case = f"use_mask={use_mask}, batch_size={batch_size}, sdpa_backend={sdpa_backend}"

                prepared_inputs = self._prepare_for_class(processed_inputs, model_class)

                with torch.no_grad():
                    try:
                        with sdpa_kernel(sdpa_backend):
                            outputs_eager = model_eager(**prepared_inputs)
                            outputs_sdpa = model_sdpa(**prepared_inputs)
                    except Exception as e:
                        fail_cases.append(f"{current_case}: {e}")
                        continue

                keys = set(logit_keys) & set(outputs_eager.keys())
                self.assertTrue(
                    keys, f"Keys {logit_keys} not found in outputs. Available keys: {outputs_eager.keys()}"
                )

                for key in keys:
                    try:
                        eager_logits = outputs_eager[key]
                        sdpa_logits = outputs_sdpa[key]
                    except KeyError:
                        raise KeyError(f"Key {key} not found in outputs. Available keys: {outputs_eager.keys()}")

                    if "hidden_state" in key and use_mask == "left":
                        eager_logits = eager_logits[:, 1:]
                        sdpa_logits = sdpa_logits[:, 1:]
                    elif "hidden_state" in key and use_mask == "right":
                        eager_logits = eager_logits[:, :-1]
                        sdpa_logits = sdpa_logits[:, :-1]

                    is_close = torch.allclose(eager_logits, sdpa_logits, atol=atol, rtol=rtol)
                    if not is_close:
                        fail_cases.append(get_mean_reldiff(key, current_case, sdpa_logits, eager_logits, atol, rtol))

            self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))


Suraj Patil's avatar
Suraj Patil committed
359
@require_torch
360
class CLIPVisionModelTest(CLIPModelTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
361
362
363
364
365
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

366
    all_model_classes = (CLIPVisionModel, CLIPVisionModelWithProjection) if is_torch_available() else ()
367
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
368
369
370
371
372
373
374
375
376
377
378
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = CLIPVisionModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
379
    @unittest.skip(reason="CLIP does not use inputs_embeds")
Suraj Patil's avatar
Suraj Patil committed
380
381
382
    def test_inputs_embeds(self):
        pass

383
    def test_model_get_set_embeddings(self):
Suraj Patil's avatar
Suraj Patil committed
384
385
386
387
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
388
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
Suraj Patil's avatar
Suraj Patil committed
389
            x = model.get_output_embeddings()
390
            self.assertTrue(x is None or isinstance(x, nn.Linear))
Suraj Patil's avatar
Suraj Patil committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

408
409
410
411
    def test_model_with_projection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_projection(*config_and_inputs)

amyeroberts's avatar
amyeroberts committed
412
    @unittest.skip
Suraj Patil's avatar
Suraj Patil committed
413
414
415
    def test_training(self):
        pass

amyeroberts's avatar
amyeroberts committed
416
    @unittest.skip
Suraj Patil's avatar
Suraj Patil committed
417
418
419
    def test_training_gradient_checkpointing(self):
        pass

420
421
422
423
424
425
426
427
428
429
430
431
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
432
    @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
433
434
435
    def test_save_load_fast_init_from_base(self):
        pass

NielsRogge's avatar
NielsRogge committed
436
    @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
437
438
439
440
441
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
442
443
444
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPVisionModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
Suraj Patil's avatar
Suraj Patil committed
445

446
447
    @slow
    def test_model_with_projection_from_pretrained(self):
448
449
450
451
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPVisionModelWithProjection.from_pretrained(model_name)
        self.assertIsNotNone(model)
        self.assertTrue(hasattr(model, "visual_projection"))
452

453
454
455
456
457
458
459
460
461
462
463
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype,
            logit_keys=("last_hidden_state", "pooler_output", "image_embeds"),
            use_attention_mask_options=(None,),
        )

Suraj Patil's avatar
Suraj Patil committed
464
465
466
467
468
469
470
471
472
473
474
475

class CLIPTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
476
        projection_dim=32,
477
        num_hidden_layers=2,
Suraj Patil's avatar
Suraj Patil committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
494
        self.projection_dim = projection_dim
Suraj Patil's avatar
Suraj Patil committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

511
512
513
514
515
516
517
        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

518
519
520
521
522
523
        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return CLIPTextConfig(
Suraj Patil's avatar
Suraj Patil committed
524
525
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
526
            projection_dim=self.projection_dim,
Suraj Patil's avatar
Suraj Patil committed
527
528
529
530
531
532
533
534
535
536
537
538
539
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = CLIPTextModel(config=config)
        model.to(torch_device)
        model.eval()
Suraj Patil's avatar
Suraj Patil committed
540
541
542
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
Suraj Patil's avatar
Suraj Patil committed
543
544
545
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

546
547
548
549
550
551
552
553
554
555
    def create_and_check_model_with_projection(self, config, input_ids, input_mask):
        model = CLIPTextModelWithProjection(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim))

Suraj Patil's avatar
Suraj Patil committed
556
557
558
559
560
561
562
563
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
564
class CLIPTextModelTest(CLIPModelTesterMixin, unittest.TestCase):
565
    all_model_classes = (CLIPTextModel, CLIPTextModelWithProjection) if is_torch_available() else ()
566
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
567
568
    test_pruning = False
    test_head_masking = False
569
    model_split_percents = [0.5, 0.8, 0.9]
Suraj Patil's avatar
Suraj Patil committed
570
571
572
573
574
575
576
577
578
579
580
581

    def setUp(self):
        self.model_tester = CLIPTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

582
583
584
585
    def test_model_with_projection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_projection(*config_and_inputs)

amyeroberts's avatar
amyeroberts committed
586
    @unittest.skip
Suraj Patil's avatar
Suraj Patil committed
587
588
589
    def test_training(self):
        pass

amyeroberts's avatar
amyeroberts committed
590
    @unittest.skip
Suraj Patil's avatar
Suraj Patil committed
591
592
593
    def test_training_gradient_checkpointing(self):
        pass

594
595
596
597
598
599
600
601
602
603
604
605
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
606
    @unittest.skip(reason="CLIP does not use inputs_embeds")
Suraj Patil's avatar
Suraj Patil committed
607
608
609
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
610
    @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
611
612
613
    def test_save_load_fast_init_from_base(self):
        pass

NielsRogge's avatar
NielsRogge committed
614
    @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
615
616
617
618
619
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
620
621
622
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPTextModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
Suraj Patil's avatar
Suraj Patil committed
623

624
625
    @slow
    def test_model_with_projection_from_pretrained(self):
626
627
628
629
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPTextModelWithProjection.from_pretrained(model_name)
        self.assertIsNotNone(model)
        self.assertTrue(hasattr(model, "text_projection"))
630

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype,
            logit_keys=("last_hidden_state", "pooler_output", "text_embeds"),
            use_attention_mask_options=(None, "right"),  # "left" is not supported for text model
        )

    @require_torch_sdpa
    def test_sdpa_can_dispatch_on_flash(self):
        self.skipTest(reason="CLIPTextModel has two attention masks: `causal_attention_mask` and `attention_mask`")

Suraj Patil's avatar
Suraj Patil committed
646
647

class CLIPModelTester:
648
649
650
651
652
653
    def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

Suraj Patil's avatar
Suraj Patil committed
654
        self.parent = parent
655
656
        self.text_model_tester = CLIPTextModelTester(parent, **text_kwargs)
        self.vision_model_tester = CLIPVisionModelTester(parent, **vision_kwargs)
657
        self.batch_size = self.text_model_tester.batch_size  # need bs for batching_equivalence test
Suraj Patil's avatar
Suraj Patil committed
658
659
660
661
662
663
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()

664
        config = self.get_config()
Suraj Patil's avatar
Suraj Patil committed
665
666
667

        return config, input_ids, attention_mask, pixel_values

668
669
670
671
672
    def get_config(self):
        return CLIPConfig.from_text_vision_configs(
            self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
        )

Suraj Patil's avatar
Suraj Patil committed
673
674
    def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
        model = CLIPModel(config).to(torch_device).eval()
Suraj Patil's avatar
Suraj Patil committed
675
676
        with torch.no_grad():
            result = model(input_ids, pixel_values, attention_mask)
Suraj Patil's avatar
Suraj Patil committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
        self.parent.assertEqual(
            result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
        )
        self.parent.assertEqual(
            result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "return_loss": True,
        }
        return config, inputs_dict


@require_torch
697
class CLIPModelTest(CLIPModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
698
    all_model_classes = (CLIPModel,) if is_torch_available() else ()
699
700
701
    pipeline_model_mapping = (
        {"feature-extraction": CLIPModel, "image-feature-extraction": CLIPVisionModel} if is_torch_available() else {}
    )
702
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
703
704
705
706
707
708
709
710
711
712
713
714
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = CLIPModelTester(self)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
715
    @unittest.skip(reason="Hidden_states is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
716
717
718
    def test_hidden_states_output(self):
        pass

NielsRogge's avatar
NielsRogge committed
719
    @unittest.skip(reason="Inputs_embeds is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
720
721
722
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
723
    @unittest.skip(reason="Retain_grad is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
724
725
726
    def test_retain_grad_hidden_states_attentions(self):
        pass

NielsRogge's avatar
NielsRogge committed
727
    @unittest.skip(reason="CLIPModel does not have input/output embeddings")
728
    def test_model_get_set_embeddings(self):
Suraj Patil's avatar
Suraj Patil committed
729
730
        pass

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    # override as the `logit_scale` parameter initilization is different for CLIP
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    # check if `logit_scale` is initilized as per the original implementation
                    if name == "logit_scale":
                        self.assertAlmostEqual(
                            param.data.item(),
                            np.log(1 / 0.07),
                            delta=1e-3,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

Suraj Patil's avatar
Suraj Patil committed
755
756
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
757
            self.skipTest(reason="test_torchscript is set to False")
Suraj Patil's avatar
Suraj Patil committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                pixel_values = inputs_dict["pixel_values"]  # CLIP needs pixel_values
                traced_model = torch.jit.trace(model, (input_ids, pixel_values))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

796
797
798
799
800
801
802
803
804
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

Suraj Patil's avatar
Suraj Patil committed
805
806
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

807
808
809
810
811
812
813
814
815
816
817
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

Suraj Patil's avatar
Suraj Patil committed
818
819
820
821
822
823
824
825
            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save CLIPConfig and check if we can load CLIPVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = CLIPVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save CLIPConfig and check if we can load CLIPTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = CLIPTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
858
                    self.skipTest(reason="No Flax model exists for this class")
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
880
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
914
                    self.skipTest(reason="No Flax model exists for this class")
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

937
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

Suraj Patil's avatar
Suraj Patil committed
958
959
    @slow
    def test_model_from_pretrained(self):
960
961
962
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
Suraj Patil's avatar
Suraj Patil committed
963

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype,
            logit_keys=("logits_per_image", "logits_per_text"),
            use_attention_mask_options=(None, "right"),  # "left" is not supported for text model
        )

    @require_torch_sdpa
    def test_sdpa_can_dispatch_on_flash(self):
        self.skipTest(reason="CLIP text tower has two attention masks: `causal_attention_mask` and `attention_mask`")

    @require_torch_sdpa
    def test_sdpa_can_compile_dynamic(self):
        self.skipTest(reason="CLIP model can't be compiled dynamic, error in clip_loss`")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference_equivalence(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
                model.to(torch_device)

                dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
                dummy_input_ids = inputs_dict["input_ids"]

                outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
                outputs_fa = model_fa(
                    pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
                )

                self.assertTrue(
                    torch.allclose(outputs.logits_per_image, outputs_fa.logits_per_image, atol=4e-2, rtol=4e-2),
                    f"Image logits max diff: {torch.max(torch.abs(outputs.logits_per_image - outputs_fa.logits_per_image))}",
                )
                self.assertTrue(
                    torch.allclose(outputs.logits_per_text, outputs_fa.logits_per_text, atol=4e-2, rtol=4e-2),
                    f"Text logits max diff: {torch.max(torch.abs(outputs.logits_per_text - outputs_fa.logits_per_text))}",
                )

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    def test_flash_attn_2_inference_equivalence_right_padding(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="eager"
                )
                model.to(torch_device)

                dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
                dummy_input_ids = inputs_dict["input_ids"]
                dummy_pixel_mask = inputs_dict["attention_mask"]

                # right padding
                dummy_pixel_mask[:] = 1
                dummy_pixel_mask[:, -1:] = 0

                outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
                outputs_fa = model_fa(
                    pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
                )

                logits_per_image_eager = outputs.logits_per_image[:, :-1]
                logits_per_text_eager = outputs.logits_per_text[:, :-1]

                logits_per_image_sdpa = outputs_fa.logits_per_image[:, :-1]
                logits_per_text_sdpa = outputs_fa.logits_per_text[:, :-1]

                self.assertTrue(
                    torch.allclose(logits_per_image_eager, logits_per_image_sdpa, atol=4e-2, rtol=4e-2),
                    f"Image logits max diff: {torch.max(torch.abs(logits_per_image_eager - logits_per_image_sdpa))}",
                )
                self.assertTrue(
                    torch.allclose(logits_per_text_eager, logits_per_text_sdpa, atol=4e-2, rtol=4e-2),
                    f"Text logits max diff: {torch.max(torch.abs(logits_per_text_eager - logits_per_text_sdpa))}",
                )

Suraj Patil's avatar
Suraj Patil committed
1073

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
class CLIPForImageClassificationModelTester(CLIPModelTester):
    def __init__(self, parent):
        super().__init__(parent)
        self.batch_size = self.vision_model_tester.batch_size
        self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
        self.hidden_size = self.vision_model_tester.hidden_size
        self.seq_length = self.vision_model_tester.seq_length

    def prepare_config_and_inputs(self):
        _, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
        config = self.get_config()

        return config, pixel_values

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
1096
class CLIPForImageClassificationModelTest(CLIPModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
    all_model_classes = (CLIPForImageClassification,) if is_torch_available() else ()
    pipeline_model_mapping = {"image-classification": CLIPForImageClassification} if is_torch_available() else {}
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = CLIPForImageClassificationModelTester(self)

    @unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
1113
    def test_model_get_set_embeddings(self):
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="CLIP uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    @is_flaky()
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        super().test_eager_matches_sdpa_inference(
            torch_dtype=torch_dtype,
            logit_keys=("logits",),
            use_attention_mask_options=(None,),
        )

1143

Suraj Patil's avatar
Suraj Patil committed
1144
1145
1146
1147
1148
1149
1150
1151
# We will verify our results on an image of cute cats
def prepare_img():
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    im = Image.open(requests.get(url, stream=True).raw)
    return im


@require_vision
1152
@require_torch
Suraj Patil's avatar
Suraj Patil committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
class CLIPModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPModel.from_pretrained(model_name).to(torch_device)
        processor = CLIPProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt"
        ).to(torch_device)

        # forward pass
1166
1167
        with torch.no_grad():
            outputs = model(**inputs)
Suraj Patil's avatar
Suraj Patil committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

        # verify the logits
        self.assertEqual(
            outputs.logits_per_image.shape,
            torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            outputs.logits_per_text.shape,
            torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )

1179
        expected_logits = torch.tensor([[24.5701, 19.3049]], device=torch_device)
Suraj Patil's avatar
Suraj Patil committed
1180
1181

        self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))