test_processing_musicgen.py 6.36 KB
Newer Older
Sanchit Gandhi's avatar
Sanchit Gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the MusicGen processor."""

import random
import shutil
import tempfile
import unittest

import numpy as np

from transformers import T5Tokenizer, T5TokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torch
from transformers.utils.import_utils import is_speech_available, is_torch_available


if is_torch_available():
    pass

if is_speech_available():
    from transformers import EncodecFeatureExtractor, MusicgenProcessor


global_rng = random.Random()


def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


@require_torch
@require_sentencepiece
class MusicgenProcessorTest(unittest.TestCase):
    def setUp(self):
        self.checkpoint = "facebook/musicgen-small"
        self.tmpdirname = tempfile.mkdtemp()

    def get_tokenizer(self, **kwargs):
        return T5Tokenizer.from_pretrained(self.checkpoint, **kwargs)

    def get_feature_extractor(self, **kwargs):
        return EncodecFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = MusicgenProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer, T5TokenizerFast)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, EncodecFeatureExtractor)

    def test_save_load_pretrained_additional_features(self):
        processor = MusicgenProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)

        processor = MusicgenProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, T5TokenizerFast)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, EncodecFeatureExtractor)

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        raw_speech = floats_list((3, 1000))

        input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
        input_processor = processor(raw_speech, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "This is a test string"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(sequences=predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)

    def test_model_input_names(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        self.assertListEqual(
            processor.model_input_names,
            feature_extractor.model_input_names,
            msg="`processor` and `feature_extractor` model input names do not match",
        )

    def test_decode_audio(self):
        feature_extractor = self.get_feature_extractor(padding_side="left")
        tokenizer = self.get_tokenizer()

        processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        raw_speech = [floats_list((1, x))[0] for x in range(5, 20, 5)]
        padding_mask = processor(raw_speech).padding_mask

        generated_speech = np.asarray(floats_list((3, 20)))[:, None, :]
        decoded_audios = processor.batch_decode(generated_speech, padding_mask=padding_mask)

        self.assertIsInstance(decoded_audios, list)

        for audio in decoded_audios:
            self.assertIsInstance(audio, np.ndarray)

        self.assertTrue(decoded_audios[0].shape == (1, 10))
        self.assertTrue(decoded_audios[1].shape == (1, 15))
        self.assertTrue(decoded_audios[2].shape == (1, 20))