test_modeling_encodec.py 23.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Encodec model. """

import copy
import inspect
import os
import tempfile
import unittest
from typing import Dict, List, Tuple

import numpy as np
from datasets import Audio, load_dataset

from transformers import AutoProcessor, EncodecConfig
from transformers.testing_utils import (
    is_torch_available,
    require_torch,
    slow,
    torch_device,
)

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import EncodecModel


def prepare_inputs_dict(
    config,
    input_ids=None,
    input_values=None,
    decoder_input_ids=None,
    attention_mask=None,
    decoder_attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
    cross_attn_head_mask=None,
):
    if input_ids is not None:
        encoder_dict = {"input_ids": input_ids}
    else:
        encoder_dict = {"input_values": input_values}

    decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}

    return {**encoder_dict, **decoder_dict}


@require_torch
class EncodecModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        num_channels=2,
        is_training=False,
        num_hidden_layers=4,
        intermediate_size=40,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.is_training = is_training

        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size

    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
        config = self.get_config()
        inputs_dict = {"input_values": input_values}
        return config, inputs_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_config(self):
        return EncodecConfig(audio_channels=self.num_channels, chunk_in_sec=None)

    def create_and_check_model_forward(self, config, inputs_dict):
        model = EncodecModel(config=config).to(torch_device).eval()

        input_values = inputs_dict["input_values"]
        result = model(input_values)
        self.parent.assertEqual(
            result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
        )


@require_torch
class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (EncodecModel,) if is_torch_available() else ()
    is_encoder_decoder = True
    test_pruning = False
    test_headmasking = False
    test_resize_embeddings = False
120
    pipeline_model_mapping = {"feature-extraction": EncodecModel} if is_torch_available() else {}
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    input_name = "input_values"

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        # model does not have attention and does not support returning hidden states
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
        if "output_attentions" in inputs_dict:
            inputs_dict.pop("output_attentions")
        if "output_hidden_states" in inputs_dict:
            inputs_dict.pop("output_hidden_states")
        return inputs_dict

    def setUp(self):
        self.model_tester = EncodecModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=EncodecConfig, hidden_size=37, common_properties=[], has_text_modality=False
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_forward(*config_and_inputs)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_values", "padding_mask", "bandwidth"]
            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    @unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
    def test_model_common_attributes(self):
        pass

    @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
    def test_torchscript_output_attentions(self):
        pass

    @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic")
    def test_torchscript_output_hidden_state(self):
        pass

    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class)

            main_input_name = model_class.main_input_name

            try:
                main_input = inputs[main_input_name]
                model(main_input)
                traced_model = torch.jit.trace(model, main_input)
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

    @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
    def test_attention_outputs(self):
        pass

    def test_feed_forward_chunking(self):
        (original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            config.chunk_length_s = None
            config.overlap = None
            config.sampling_rate = 10

            model = model_class(config)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs["input_values"] = inputs["input_values"].repeat(1, 1, 10)

            hidden_states_no_chunk = model(**inputs)[0]

            torch.manual_seed(0)
            config.chunk_length_s = 1
            config.overlap = 0
            config.sampling_rate = 10

            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**inputs)[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

    @unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic")
    def test_hidden_states_output(self):
        pass

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_determinism(first, second):
            # outputs are not tensors but list (since each sequence don't have the same frame_length)
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)

    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                uniform_init_parms = ["conv"]
                ignore_init = ["lstm"]
                if param.requires_grad:
376
                    if any(x in name for x in uniform_init_parms):
377
378
379
380
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
381
                    elif not any(x in name for x in ignore_init):
382
383
384
385
386
387
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

388
389
390
391
392
    def test_identity_shortcut(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        config.use_conv_shortcut = False
        self.model_tester.create_and_check_model_forward(config, inputs_dict)

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

def normalize(arr):
    norm = np.linalg.norm(arr)
    normalized_arr = arr / norm
    return normalized_arr


def compute_rmse(arr1, arr2):
    arr1_normalized = normalize(arr1)
    arr2_normalized = normalize(arr2)
    return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())


@slow
@require_torch
class EncodecIntegrationTest(unittest.TestCase):
    def test_integration_24kHz(self):
        expected_rmse = {
            "1.5": 0.0025,
            "24.0": 0.0015,
        }
        expected_codesums = {
415
416
            "1.5": [371955],
            "24.0": [6659962],
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        }
        librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        model_id = "facebook/encodec_24khz"

        model = EncodecModel.from_pretrained(model_id).to(torch_device)
        processor = AutoProcessor.from_pretrained(model_id)

        librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
        audio_sample = librispeech_dummy[-1]["audio"]["array"]

        inputs = processor(
            raw_audio=audio_sample,
            sampling_rate=processor.sampling_rate,
            return_tensors="pt",
        ).to(torch_device)

        for bandwidth, expected_rmse in expected_rmse.items():
            with torch.no_grad():
                # use max bandwith for best possible reconstruction
                encoder_outputs = model.encode(inputs["input_values"], bandwidth=float(bandwidth))

                audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]]

                # make sure audio encoded codes are correct
                self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])

                audio_codes, scales = encoder_outputs.to_tuple()
                input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
                input_values_enc_dec = model(
                    inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
                )[-1]

            # make sure forward and decode gives same result
            self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))

            # make sure shape matches
            self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)

            arr = inputs["input_values"][0].cpu().numpy()
            arr_enc_dec = input_values_enc_dec[0].cpu().numpy()

            # make sure audios are more or less equal
            # the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
            rmse = compute_rmse(arr, arr_enc_dec)
            self.assertTrue(rmse < expected_rmse)

    def test_integration_48kHz(self):
        expected_rmse = {
            "3.0": 0.001,
            "24.0": 0.0005,
        }
        expected_codesums = {
469
470
            "3.0": [144259, 146765, 156435, 176871, 161971],
            "24.0": [1568553, 1294948, 1306190, 1464747, 1663150],
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        }
        librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        model_id = "facebook/encodec_48khz"

        model = EncodecModel.from_pretrained(model_id).to(torch_device)
        model = model.eval()
        processor = AutoProcessor.from_pretrained(model_id)

        librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
        audio_sample = librispeech_dummy[-1]["audio"]["array"]

        # transform mono to stereo
        audio_sample = np.array([audio_sample, audio_sample])

        inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt").to(
            torch_device
        )

        for bandwidth, expected_rmse in expected_rmse.items():
            with torch.no_grad():
                # use max bandwith for best possible reconstruction
                encoder_outputs = model.encode(
                    inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth), return_dict=False
                )
                audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]]

                # make sure audio encoded codes are correct
                self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])
                audio_codes, scales = encoder_outputs
                input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
                input_values_enc_dec = model(
                    inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
                )[-1]

            # make sure forward and decode gives same result
            self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))

            # make sure shape matches
            self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)

            arr = inputs["input_values"][0].cpu().numpy()
            arr_enc_dec = input_values_enc_dec[0].cpu().numpy()

            # make sure audios are more or less equal
            # the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
            rmse = compute_rmse(arr, arr_enc_dec)
            self.assertTrue(rmse < expected_rmse)

    def test_batch_48kHz(self):
        expected_rmse = {
            "3.0": 0.001,
            "24.0": 0.0005,
        }
        expected_codesums = {
            "3.0": [
526
527
                [72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
                [85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
528
529
            ],
            "24.0": [
530
531
                [72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
                [85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
            ],
        }
        librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        model_id = "facebook/encodec_48khz"

        model = EncodecModel.from_pretrained(model_id).to(torch_device)
        processor = AutoProcessor.from_pretrained(model_id, chunk_length_s=1, overlap=0.01)

        librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))

        audio_samples = [
            np.array([audio_sample["array"], audio_sample["array"]])
            for audio_sample in librispeech_dummy[-2:]["audio"]
        ]

        inputs = processor(raw_audio=audio_samples, sampling_rate=processor.sampling_rate, return_tensors="pt")
        input_values = inputs["input_values"].to(torch_device)
        for bandwidth, expected_rmse in expected_rmse.items():
            with torch.no_grad():
                # use max bandwith for best possible reconstruction
                encoder_outputs = model.encode(input_values, bandwidth=float(bandwidth), return_dict=False)
                audio_code_sums_0 = [a[0][0].sum().cpu().item() for a in encoder_outputs[0]]
                audio_code_sums_1 = [a[0][1].sum().cpu().item() for a in encoder_outputs[0]]

                # make sure audio encoded codes are correct
                self.assertListEqual(audio_code_sums_0, expected_codesums[bandwidth][0])
                self.assertListEqual(audio_code_sums_1, expected_codesums[bandwidth][1])

                audio_codes, scales = encoder_outputs
                input_values_dec = model.decode(audio_codes, scales)[0]
                input_values_enc_dec = model(input_values, bandwidth=float(bandwidth))[-1]

            # make sure forward and decode gives same result
            self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))

            # make sure shape matches
            self.assertTrue(input_values.shape == input_values_enc_dec.shape)

            arr = input_values[0].cpu().numpy()
            arr_enc_dec = input_values_enc_dec[0].cpu().numpy()

            # make sure audios are more or less equal
            # the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
            rmse = compute_rmse(arr, arr_enc_dec)
            self.assertTrue(rmse < expected_rmse)