test_tokenization_mbart50.py 16.6 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
import shutil
Suraj Patil's avatar
Suraj Patil committed
17
18
19
20
import tempfile
import unittest

from transformers import SPIECE_UNDERLINE, BatchEncoding, MBart50Tokenizer, MBart50TokenizerFast, is_torch_available
21
from transformers.testing_utils import nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow
Suraj Patil's avatar
Suraj Patil committed
22
23
24
25

from .test_tokenization_common import TokenizerTesterMixin


26
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
Suraj Patil's avatar
Suraj Patil committed
27
28
29
30
31
32
33
34
35
36
37


if is_torch_available():
    from transformers.models.mbart.modeling_mbart import shift_tokens_right

EN_CODE = 250004
RO_CODE = 250020


@require_sentencepiece
@require_tokenizers
38
class MBart50TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
39
40
41
    tokenizer_class = MBart50Tokenizer
    rust_tokenizer_class = MBart50TokenizerFast
    test_rust_tokenizer = True
42
    test_sentencepiece = True
Suraj Patil's avatar
Suraj Patil committed
43
44
45
46
47
48
49
50

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "<s>"
        token_id = 0

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "<s>")
        self.assertEqual(vocab_keys[1], "<pad>")
        self.assertEqual(vocab_keys[-1], "<mask>")
        self.assertEqual(len(vocab_keys), 1_054)

    def test_vocab_size(self):
        self.assertEqual(self.get_tokenizer().vocab_size, 1_054)

Suraj Patil's avatar
Suraj Patil committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def test_full_tokenizer(self):
        tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            # fmt: off
            [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "茅", "."],
            # fmt: on
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            # fmt: off
            [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."],
            # fmt: on
        )

105
106
107
108
109
110
111
112
113
114
115
116
    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}  # noqa: E501
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="facebook/mbart-large-50",
            revision="d3913889c59cd5c9e456b269c376325eabad57e2",
        )

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    # overwrite from test_tokenization_common to speed up test
    def test_save_pretrained(self):
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

        self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {})
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

Suraj Patil's avatar
Suraj Patil committed
189
190
191
192

@require_torch
@require_sentencepiece
@require_tokenizers
193
class MBart50OneToManyIntegrationTest(unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    checkpoint_name = "facebook/mbart-large-50-one-to-many-mmt"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
        'Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.',
    ]
    expected_src_tokens = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: MBart50Tokenizer = MBart50Tokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
        )
        cls.pad_token_id = 1
        return cls

    def check_language_codes(self):
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 250038)

    def test_tokenizer_batch_encode_plus(self):
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
        generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_romanian)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_tokenizer_truncation(self):
        src_text = ["this is gunna be a long sentence " * 20]
        assert isinstance(src_text[0], str)
        desired_max_length = 10
235
        ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
Suraj Patil's avatar
Suraj Patil committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        self.assertEqual(ids[0], EN_CODE)
        self.assertEqual(ids[-1], 2)
        self.assertEqual(len(ids), desired_max_length)

    def test_mask_token(self):
        self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250053, 250001])

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = MBart50Tokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)

    @require_torch
    def test_batch_fairseq_parity(self):
252
253
254
255
256
257
        batch = self.tokenizer(self.src_text, padding=True)
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id).tolist()
        labels = labels.tolist()
Suraj Patil's avatar
Suraj Patil committed
258
259
260
261

        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        assert batch.input_ids[1][0] == EN_CODE
        assert batch.input_ids[1][-1] == 2
262
263
        assert labels[1][0] == RO_CODE
        assert labels[1][-1] == 2
Suraj Patil's avatar
Suraj Patil committed
264
265
266
        assert batch.decoder_input_ids[1][:2] == [2, RO_CODE]

    @require_torch
267
268
269
    def test_tokenizer_prepare_batch(self):
        batch = self.tokenizer(
            self.src_text, padding=True, truncation=True, max_length=len(self.expected_src_tokens), return_tensors="pt"
Suraj Patil's avatar
Suraj Patil committed
270
        )
271
272
273
274
275
276
277
278
279
280
281
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(
                self.tgt_text,
                padding=True,
                truncation=True,
                max_length=len(self.expected_src_tokens),
                return_tensors="pt",
            )
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

Suraj Patil's avatar
Suraj Patil committed
282
283
284
285
286
287
288
289
290
291
292
293
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 14), batch.input_ids.shape)
        self.assertEqual((2, 14), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(self.expected_src_tokens, result)
        self.assertEqual(2, batch.decoder_input_ids[0, 0])  # decoder_start_token_id
        # Test that special tokens are reset
        self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
        self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])

    def test_seq2seq_max_target_length(self):
294
295
296
297
298
299
        batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

Suraj Patil's avatar
Suraj Patil committed
300
301
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 10)
302
303
304

    @require_torch
    def test_tokenizer_translation(self):
305
306
307
        inputs = self.tokenizer._build_translation_inputs(
            "A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR"
        )
308
309
310
311
312
313
314
315
316
317
318

        self.assertEqual(
            nested_simplify(inputs),
            {
                # en_XX, A, test, EOS
                "input_ids": [[250004, 62, 3034, 2]],
                "attention_mask": [[1, 1, 1, 1]],
                # ar_AR
                "forced_bos_token_id": 250001,
            },
        )