run_ner.py 15.8 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2020 The HuggingFace Team All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
20

21
22
import logging
import os
23
import sys
Julien Chaumond's avatar
Julien Chaumond committed
24
from dataclasses import dataclass, field
25
from typing import Optional
26
27

import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from datasets import ClassLabel, load_dataset
29
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
36
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
37
38
39
40
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
41
)
42
from transformers.trainer_utils import is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
43
44


45
46
47
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
53

Julien Chaumond's avatar
Julien Chaumond committed
54
55
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
56
    )
Julien Chaumond's avatar
Julien Chaumond committed
57
58
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
59
    )
Julien Chaumond's avatar
Julien Chaumond committed
60
61
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
62
    )
Julien Chaumond's avatar
Julien Chaumond committed
63
    cache_dir: Optional[str] = field(
64
65
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
66
    )
67
68


Julien Chaumond's avatar
Julien Chaumond committed
69
70
71
72
73
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
74

75
76
77
78
79
80
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
81
    )
82
83
84
85
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
86
        default=None,
87
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
88
    )
89
90
91
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
92
    )
Julien Chaumond's avatar
Julien Chaumond committed
93
94
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
95
    )
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
127

Julien Chaumond's avatar
Julien Chaumond committed
128
129
130
131
132
133
134

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
135
136
137
138
139
140
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
141

142
    if (
Julien Chaumond's avatar
Julien Chaumond committed
143
144
145
146
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
147
    ):
148
        raise ValueError(
149
150
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
151
152
        )

153
    # Setup logging
154
155
156
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
157
        level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
158
    )
159
160

    # Log on each process the small summary:
161
    logger.warning(
162
163
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
164
    )
165
166
167
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
168
169
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
170
    logger.info("Training/evaluation parameters %s", training_args)
171

172
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
173
    set_seed(training_args.seed)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
202
        features = datasets["train"].features
203
204
    else:
        column_names = datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
207
208
209
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (
        f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
    )
210

Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
213
214
215
216
217
218
219
220
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
221
222
223
224
225
226
227
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
228
    num_labels = len(label_list)
229
230

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
231
232
233
234
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
235
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
236
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
237
        num_labels=num_labels,
238
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
239
        cache_dir=model_args.cache_dir,
240
    )
241
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
242
243
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
244
        use_fast=True,
245
    )
246
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
247
248
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
249
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
250
        cache_dir=model_args.cache_dir,
251
    )
252

253
254
255
256
257
258
259
260
261
262
263
264
265
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
            return_offsets_mapping=True,
Julien Chaumond's avatar
Julien Chaumond committed
266
        )
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        offset_mappings = tokenized_inputs.pop("offset_mapping")
        labels = []
        for label, offset_mapping in zip(examples[label_column_name], offset_mappings):
            label_index = 0
            current_label = -100
            label_ids = []
            for offset in offset_mapping:
                # We set the label for the first token of each word. Special characters will have an offset of (0, 0)
                # so the test ignores them.
                if offset[0] == 0 and offset[1] != 0:
                    current_label = label_to_id[label[label_index]]
                    label_index += 1
                    label_ids.append(current_label)
                # For special tokens, we set the label to -100 so it's automatically ignored in the loss function.
                elif offset[0] == 0 and offset[1] == 0:
                    label_ids.append(-100)
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(current_label if data_args.label_all_tokens else -100)

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    tokenized_datasets = datasets.map(
        tokenize_and_align_labels,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
Julien Chaumond's avatar
Julien Chaumond committed
297
298
    )

299
300
    # Data collator
    data_collator = DataCollatorForTokenClassification(tokenizer)
Julien Chaumond's avatar
Julien Chaumond committed
301

302
303
304
305
    # Metrics
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
306

307
308
309
310
311
312
313
314
315
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
316
317

        return {
318
319
320
321
            "accuracy_score": accuracy_score(true_labels, true_predictions),
            "precision": precision_score(true_labels, true_predictions),
            "recall": recall_score(true_labels, true_predictions),
            "f1": f1_score(true_labels, true_predictions),
Julien Chaumond's avatar
Julien Chaumond committed
322
323
324
325
326
327
        }

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
328
329
330
331
        train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
        eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
332
333
        compute_metrics=compute_metrics,
    )
334
335

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
336
337
338
339
    if training_args.do_train:
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
340
        trainer.save_model()  # Saves the tokenizer too for easy upload
341
342
343

    # Evaluation
    results = {}
344
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
345
346
        logger.info("*** Evaluate ***")

347
        results = trainer.evaluate()
Julien Chaumond's avatar
Julien Chaumond committed
348

349
350
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_ner.txt")
        if trainer.is_world_process_zero():
351
352
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
353
354
355
                for key, value in results.items():
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")
Julien Chaumond's avatar
Julien Chaumond committed
356
357

    # Predict
358
    if training_args.do_predict:
359
360
        logger.info("*** Predict ***")

361
        test_dataset = tokenized_datasets["test"]
362
363
        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
364

365
366
367
368
369
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
370
371

        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
372
        if trainer.is_world_process_zero():
373
374
            with open(output_test_results_file, "w") as writer:
                for key, value in metrics.items():
375
376
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")
Julien Chaumond's avatar
Julien Chaumond committed
377

378
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
379
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
380
        if trainer.is_world_process_zero():
381
            with open(output_test_predictions_file, "w") as writer:
382
383
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
384

385
386
387
    return results


388
389
390
391
392
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


393
394
if __name__ == "__main__":
    main()