test_utils_check_copies.py 8.77 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
21
import os
import re
import shutil
import sys
import tempfile
import unittest

22
23
import black

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
sys.path.append(os.path.join(git_repo_path, "utils"))

import check_copies  # noqa: E402


# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
REFERENCE_CODE = """    def __init__(self, config):
        super().__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states
"""


class CopyCheckTester(unittest.TestCase):
    def setUp(self):
        self.transformer_dir = tempfile.mkdtemp()
Sylvain Gugger's avatar
Sylvain Gugger committed
56
        os.makedirs(os.path.join(self.transformer_dir, "models/bert/"))
57
58
        check_copies.TRANSFORMER_PATH = self.transformer_dir
        shutil.copy(
Sylvain Gugger's avatar
Sylvain Gugger committed
59
60
            os.path.join(git_repo_path, "src/transformers/models/bert/modeling_bert.py"),
            os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"),
61
62
63
64
65
66
67
68
69
70
        )

    def tearDown(self):
        check_copies.TRANSFORMER_PATH = "src/transformers"
        shutil.rmtree(self.transformer_dir)

    def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None):
        code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code
        if overwrite_result is not None:
            expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result
71
        code = black.format_str(code, mode=black.FileMode([black.TargetVersion.PY35], line_length=119))
72
        fname = os.path.join(self.transformer_dir, "new_code.py")
73
        with open(fname, "w", newline="\n") as f:
74
75
            f.write(code)
        if overwrite_result is None:
76
            self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0)
77
78
79
80
81
82
        else:
            check_copies.is_copy_consistent(f.name, overwrite=True)
            with open(fname, "r") as f:
                self.assertTrue(f.read(), expected)

    def test_find_code_in_transformers(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
83
        code = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead")
84
85
86
87
88
        self.assertEqual(code, REFERENCE_CODE)

    def test_is_copy_consistent(self):
        # Base copy consistency
        self.check_copy_consistency(
Sylvain Gugger's avatar
Sylvain Gugger committed
89
            "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead",
90
91
92
93
94
95
            "BertLMPredictionHead",
            REFERENCE_CODE + "\n",
        )

        # With no empty line at the end
        self.check_copy_consistency(
Sylvain Gugger's avatar
Sylvain Gugger committed
96
            "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead",
97
98
99
100
101
102
            "BertLMPredictionHead",
            REFERENCE_CODE,
        )

        # Copy consistency with rename
        self.check_copy_consistency(
Sylvain Gugger's avatar
Sylvain Gugger committed
103
            "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel",
104
105
106
107
108
            "TestModelLMPredictionHead",
            re.sub("Bert", "TestModel", REFERENCE_CODE),
        )

        # Copy consistency with a really long name
109
        long_class_name = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
110
        self.check_copy_consistency(
Sylvain Gugger's avatar
Sylvain Gugger committed
111
            f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}",
112
113
114
115
116
117
            f"{long_class_name}LMPredictionHead",
            re.sub("Bert", long_class_name, REFERENCE_CODE),
        )

        # Copy consistency with overwrite
        self.check_copy_consistency(
Sylvain Gugger's avatar
Sylvain Gugger committed
118
            "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel",
119
120
121
122
            "TestModelLMPredictionHead",
            REFERENCE_CODE,
            overwrite_result=re.sub("Bert", "TestModel", REFERENCE_CODE),
        )
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    def test_convert_to_localized_md(self):
        localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"]

        md_list = "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning."
        localized_md_list = "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
        converted_md_list_sample = "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。\n"

        num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
            md_list, localized_md_list, localized_readme["format_model_list"]
        )

        self.assertFalse(num_models_equal)
        self.assertEqual(converted_md_list, converted_md_list_sample)

        num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
            md_list, converted_md_list, localized_readme["format_model_list"]
        )

        # Check whether the number of models is equal to README.md after conversion.
        self.assertTrue(num_models_equal)