modeling_tf_xlnet_test.py 12.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import unittest
import json
import random
import shutil
import pytest

26
from transformers import XLNetConfig, is_tf_available
thomwolf's avatar
thomwolf committed
27
28
29
30

if is_tf_available():
    import tensorflow as tf

31
    from transformers.modeling_tf_xlnet import (TFXLNetModel, TFXLNetLMHeadModel,
32
33
34
                                                        TFXLNetForSequenceClassification,
                                                        TFXLNetForQuestionAnsweringSimple,
                                                        TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
thomwolf's avatar
thomwolf committed
35
36
37
38
39
40
41
42
else:
    pytestmark = pytest.mark.skip("Require TensorFlow")

from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester

class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):

43
44
45
    all_model_classes=(TFXLNetModel, TFXLNetLMHeadModel,
                       TFXLNetForSequenceClassification,
                       TFXLNetForQuestionAnsweringSimple) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    test_pruning = False

    class TFXLNetModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     mem_len=10,
                     clamp_len=-1,
                     reuse_len=15,
                     is_training=True,
                     use_labels=True,
                     vocab_size=99,
                     cutoffs=[10, 50, 80],
                     hidden_size=32,
                     num_attention_heads=4,
                     d_inner=128,
                     num_hidden_layers=5,
                     max_position_embeddings=10,
                     type_sequence_label_size=2,
                     untie_r=True,
                     bi_data=False,
                     same_length=False,
                     initializer_range=0.05,
                     seed=1,
                     type_vocab_size=2,
            ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
            # self.key_len = seq_length + mem_len
            self.clamp_len = clamp_len
            self.reuse_len = reuse_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.hidden_size = hidden_size
            self.num_attention_heads = num_attention_heads
            self.d_inner = d_inner
            self.num_hidden_layers = num_hidden_layers
            self.max_position_embeddings = max_position_embeddings
            self.bi_data = bi_data
            self.untie_r = untie_r
            self.same_length = same_length
            self.initializer_range = initializer_range
            self.seed = seed
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size

        def prepare_config_and_inputs(self):
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

            input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
            perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
            perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
            perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
            # perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
thomwolf's avatar
thomwolf committed
109
110
            target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
            target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
thomwolf's avatar
thomwolf committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
            # target_mapping[:, 0, -1] = 1.0  # predict last token

            sequence_labels = None
            lm_labels = None
            is_impossible_labels = None
            if self.use_labels:
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

            config = XLNetConfig(
                vocab_size_or_config_json_file=self.vocab_size,
                d_model=self.hidden_size,
                n_head=self.num_attention_heads,
                d_inner=self.d_inner,
                n_layer=self.num_hidden_layers,
                untie_r=self.untie_r,
                max_position_embeddings=self.max_position_embeddings,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                same_length=self.same_length,
                reuse_len=self.reuse_len,
                bi_data=self.bi_data,
                initializer_range=self.initializer_range,
                num_labels=self.type_sequence_label_size)

            return (config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
                    target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels)

        def set_seed(self):
            random.seed(self.seed)
            tf.random.set_seed(self.seed)

        def create_and_check_xlnet_base_model(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
                target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels):
            model = TFXLNetModel(config)

thomwolf's avatar
thomwolf committed
149
            inputs = {'input_ids': input_ids_1,
thomwolf's avatar
thomwolf committed
150
                      'input_mask': input_mask,
thomwolf's avatar
thomwolf committed
151
                      'token_type_ids': segment_ids}
thomwolf's avatar
thomwolf committed
152
153
154

            _, _ = model(inputs)

thomwolf's avatar
thomwolf committed
155
            inputs = [input_ids_1, input_mask]
thomwolf's avatar
thomwolf committed
156
157
158
159

            outputs, mems_1 = model(inputs)

            result = {
thomwolf's avatar
thomwolf committed
160
                "mems_1": [mem.numpy() for mem in mems_1],
thomwolf's avatar
thomwolf committed
161
162
163
164
165
166
167
168
169
170
171
172
                "outputs": outputs.numpy(),
            }

            self.parent.assertListEqual(
                list(result["outputs"].shape),
                [self.batch_size, self.seq_length, self.hidden_size])
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers)

        def create_and_check_xlnet_lm_head(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
                target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels):
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            model = TFXLNetLMHeadModel(config)

            inputs_1 = {'input_ids': input_ids_1,
                      'token_type_ids': segment_ids}

            all_logits_1, mems_1 = model(inputs_1)

            inputs_2 = {'input_ids': input_ids_2,
                        'mems': mems_1,
                        'token_type_ids': segment_ids}

            all_logits_2, mems_2 = model(inputs_2)

            inputs_3 = {'input_ids': input_ids_q,
                        'perm_mask': perm_mask,
                        'target_mapping': target_mapping}

            logits, _ = model(inputs_3)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "all_logits_1": all_logits_1.numpy(),
                "mems_2": [mem.numpy() for mem in mems_2],
                "all_logits_2": all_logits_2.numpy(),
            }

            self.parent.assertListEqual(
                list(result["all_logits_1"].shape),
                [self.batch_size, self.seq_length, self.vocab_size])
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers)

            self.parent.assertListEqual(
                list(result["all_logits_2"].shape),
                [self.batch_size, self.seq_length, self.vocab_size])
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_2"]),
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers)
thomwolf's avatar
thomwolf committed
212
213
214

        def create_and_check_xlnet_qa(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
                target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels):
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            model = TFXLNetForQuestionAnsweringSimple(config)

            inputs = {'input_ids': input_ids_1,
                      'attention_mask': input_mask,
                      'token_type_ids': segment_ids}
            start_logits, end_logits, mems = model(inputs)

            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
                "mems": [m.numpy() for m in mems],
            }

            self.parent.assertListEqual(
                list(result["start_logits"].shape),
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["end_logits"].shape),
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems"]),
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers)
thomwolf's avatar
thomwolf committed
237
238
239

        def create_and_check_xlnet_sequence_classif(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
                target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels):
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
            model = TFXLNetForSequenceClassification(config)

            logits, mems_1 = model(input_ids_1)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "logits": logits.numpy(),
            }

            self.parent.assertListEqual(
                list(result["logits"].shape),
                [self.batch_size, self.type_sequence_label_size])
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers)
thomwolf's avatar
thomwolf committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
                target_mapping, segment_ids, lm_labels,
                sequence_labels, is_impossible_labels) = config_and_inputs
            inputs_dict = {'input_ids': input_ids_1}
            return config, inputs_dict


    def setUp(self):
        self.model_tester = TFXLNetModelTest.TFXLNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs) 

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)

    @pytest.mark.slow
    def test_model_from_pretrained(self):
294
        cache_dir = "/tmp/transformers_test/"
thomwolf's avatar
thomwolf committed
295
296
297
298
299
300
301
302
        for model_name in list(TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = TFXLNetModel.from_pretrained(model_name, cache_dir=cache_dir)
            shutil.rmtree(cache_dir)
            self.assertIsNotNone(model)


if __name__ == "__main__":
    unittest.main()