test_modeling_bloom.py 32.8 KB
Newer Older
Younes Belkada's avatar
Younes Belkada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import math
import unittest

from transformers import BloomConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device

from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask


if is_torch_available():
    import torch

31
32
33
34
35
36
37
38
    from transformers import (
        BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
        BloomForCausalLM,
        BloomForSequenceClassification,
        BloomForTokenClassification,
        BloomModel,
        BloomTokenizerFast,
    )
Younes Belkada's avatar
Younes Belkada committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105


@require_torch
class BloomModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=False,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1

    def get_large_model_config(self):
        return BloomConfig.from_pretrained("bigscience/bloom")

    def prepare_config_and_inputs(self, gradient_checkpointing=False):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

106
107
108
109
        sequence_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

Younes Belkada's avatar
Younes Belkada committed
110
111
        config = self.get_config(gradient_checkpointing=gradient_checkpointing)

112
        return (config, input_ids, input_mask, sequence_labels)
Younes Belkada's avatar
Younes Belkada committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    def get_config(self, gradient_checkpointing=False, slow_but_exact=True):
        return BloomConfig(
            vocab_size=self.vocab_size,
            seq_length=self.seq_length,
            hidden_size=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            resid_pdrop=self.hidden_dropout_prob,
            attn_pdrop=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
130
            num_labels=self.num_labels,
Younes Belkada's avatar
Younes Belkada committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            gradient_checkpointing=gradient_checkpointing,
            slow_but_exact=slow_but_exact,
            dtype="float32",
        )

    def create_and_check_bloom_model(self, config, input_ids, input_mask, *args):
        model = BloomModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)

    def create_and_check_bloom_model_past(self, config, input_ids, input_mask, *args):
        model = BloomModel(config=config)

        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True)
        outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids))
        outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids))

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_bloom_model_attention_mask_past(self, config, input_ids, input_mask, *args):
        model = BloomModel(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_bloom_model_past_large_inputs(self, config, input_ids, input_mask, *args):
        model = BloomModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[
            "last_hidden_state"
        ]
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args):
        model = BloomForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args):
        config.num_labels = self.num_labels
        model = BloomForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args):
        model = BloomForTokenClassification(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

Younes Belkada's avatar
Younes Belkada committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, *args, gradient_checkpointing=False
    ):
        model = BloomForCausalLM(config)
        model.to(torch_device)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def create_and_check_bloom_weight_initialization(self, config, *args):
        model = BloomModel(config)
        model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer)
        for key in model.state_dict().keys():
            if "c_proj" in key and "weight" in key:
                self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
                self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

301
        config, input_ids, input_mask, sequence_labels = config_and_inputs
Younes Belkada's avatar
Younes Belkada committed
302
303
304
305
306
307
308
309
310

        inputs_dict = {"input_ids": input_ids}

        return config, inputs_dict


@require_torch
class BloomModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):

311
312
313
314
315
316
317
318
319
320
321
    all_model_classes = (
        (
            BloomModel,
            BloomForCausalLM,
            BloomForSequenceClassification,
            BloomForTokenClassification,
        )
        if is_torch_available()
        else ()
    )

Younes Belkada's avatar
Younes Belkada committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    all_generative_model_classes = (BloomForCausalLM,) if is_torch_available() else ()
    fx_compatible = False
    test_missing_keys = False
    test_pruning = False
    test_torchscript = True  # torch.autograd functions seems to be not supported

    def setUp(self):
        self.model_tester = BloomModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BloomConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bloom_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bloom_model(*config_and_inputs)

    def test_bloom_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bloom_model_past(*config_and_inputs)

    def test_bloom_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bloom_model_attention_mask_past(*config_and_inputs)

    def test_bloom_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bloom_model_past_large_inputs(*config_and_inputs)

    def test_bloom_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
354
355
356
357
358
359
360
361

    def test_bloom_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs)

    def test_bloom_token_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_token_classification_model(*config_and_inputs)
Younes Belkada's avatar
Younes Belkada committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

    def test_bloom_gradient_checkpointing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)

    def test_bloom_weight_initialization(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bloom_weight_initialization(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = BloomModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    @slow
    @require_torch_gpu
    def test_simple_generation(self):
380
381
        # This test is a bit flaky. For some GPU architectures, pytorch sets by default allow_fp16_reduced_precision_reduction = True and some operations
        # do not give the same results under this configuration, especially torch.baddmm and torch.bmm. https://pytorch.org/docs/stable/notes/numerical_accuracy.html#fp16-on-mi200
382
383
        # As we leave the default value (True) for allow_fp16_reduced_precision_reduction , the tests failed when running in half-precision with smaller models (350m)
        # Please see: https://pytorch.org/docs/stable/notes/cuda.html#reduced-precision-reduction-in-fp16-gemms
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        # This discrepancy is observed only when using small models and seems to be stable for larger models.
        # Our conclusion is that these operations are flaky for small inputs but seems to be stable for larger inputs (for the functions `baddmm` and `bmm`), and therefore for larger models.

        # Here is a summary of an ablation study of our observations
        # EXPECTED_OUTPUT = "I enjoy walking with my cute dog, and I love to watch the kids play. I am a very active person, and I am a very good listener. I am a very good person, and I am a very good person. I am a"
        # 350m + allow_fp16_reduced_precision_reduction = False  + torch.bmm  ==> PASS
        # 350m + allow_fp16_reduced_precision_reduction = False  + torch.baddm  ==> PASS
        # 350m + allow_fp16_reduced_precision_reduction = True  + torch.baddm  ==> PASS
        # 350m + allow_fp16_reduced_precision_reduction = True  + torch.bmm  ==> FAIL

        # EXPECTED_OUTPUT = "I enjoy walking with my cute dog, but I also enjoy hiking, biking, and swimming. I love to cook and bake. I love to cook and bake. I love to cook and bake. I love to cook and bake. I love"
        # >=760m + allow_fp16_reduced_precision_reduction = True  + torch.baddm  ==> PASS  (for use_cache=True and use_cache=False)
        # >=760m + allow_fp16_reduced_precision_reduction = True  + torch.bmm  ==> PASS
        # >=760m + allow_fp16_reduced_precision_reduction = False  + torch.bmm  ==> PASS

Younes Belkada's avatar
Younes Belkada committed
399
        path_350m = "bigscience/bloom-350m"
400
        model = BloomForCausalLM.from_pretrained(path_350m, use_cache=True, revision="gs555750").cuda()
Younes Belkada's avatar
Younes Belkada committed
401
402
403
404
        model = model.eval()
        tokenizer = BloomTokenizerFast.from_pretrained(path_350m)

        input_sentence = "I enjoy walking with my cute dog"
405
        # This output has been obtained using fp32 model on the huggingface DGX workstation - NVIDIA A100 GPU
Younes Belkada's avatar
Younes Belkada committed
406
        EXPECTED_OUTPUT = (
407
408
            "I enjoy walking with my cute dog, and I love to watch the kids play with the kids. I am a very "
            "active person, and I enjoy working out, and I am a very active person. I am a very active person, and I"
Younes Belkada's avatar
Younes Belkada committed
409
410
411
412
413
414
415
416
417
418
419
        )

        input_ids = tokenizer.encode(input_sentence, return_tensors="pt")
        greedy_output = model.generate(input_ids.cuda(), max_length=50)

        self.assertEqual(tokenizer.decode(greedy_output[0], skip_special_tokens=True), EXPECTED_OUTPUT)

    @slow
    @require_torch_gpu
    def test_batch_generation(self):
        path_350m = "bigscience/bloom-350m"
420
        model = BloomForCausalLM.from_pretrained(path_350m, use_cache=True, revision="gs555750").cuda()
Younes Belkada's avatar
Younes Belkada committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        model = model.eval()
        tokenizer = BloomTokenizerFast.from_pretrained(path_350m, padding_side="left")

        input_sentence = ["I enjoy walking with my cute dog", "I enjoy walking with my cute dog"]

        input_ids = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True)
        greedy_output = model.generate(
            input_ids["input_ids"].cuda(), attention_mask=input_ids["attention_mask"], max_length=50, do_sample=False
        )

        self.assertEqual(
            tokenizer.decode(greedy_output[0], skip_special_tokens=True),
            tokenizer.decode(greedy_output[1], skip_special_tokens=True),
        )

    @slow
    @require_torch_gpu
    def test_batch_generation_padd(self):
439

Younes Belkada's avatar
Younes Belkada committed
440
        path_350m = "bigscience/bloom-350m"
441
        model = BloomForCausalLM.from_pretrained(path_350m, use_cache=True, revision="gs555750").cuda()
Younes Belkada's avatar
Younes Belkada committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
        model = model.eval()
        tokenizer = BloomTokenizerFast.from_pretrained(path_350m, padding_side="left")

        input_sentence = ["I enjoy walking with my cute dog", "Hello my name is"]
        input_sentence_without_pad = "Hello my name is"

        input_ids = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True)
        input_ids_without_pad = tokenizer.encode(input_sentence_without_pad, return_tensors="pt")

        greedy_output = model.generate(
            input_ids["input_ids"].cuda(), attention_mask=input_ids["attention_mask"], max_length=50, do_sample=False
        )
        greedy_output_without_pad = model.generate(input_ids_without_pad.cuda(), max_length=50, do_sample=False)

        # test token values
        self.assertEqual(greedy_output[-1, 3:].tolist(), greedy_output_without_pad[0, :-3].tolist())

        # test reconstructions
        self.assertEqual(
            tokenizer.decode(greedy_output[-1, 3:], skip_special_tokens=True),
            tokenizer.decode(greedy_output_without_pad[0, :-3], skip_special_tokens=True),
        )


@require_torch
class BloomEmbeddingTest(unittest.TestCase):
    """
    The goal here is to compare the embeddings generated by the model trained
    using Megatron-LM with the one from the transformers library, with a small GPT2-like model
    to ensure that the conversion from Megatron-LM to transformers has been done successfully.
    The script compares the logits of the embedding layer and the transformer layers.

    WARNING: It is expected that these logits will not have exactly the same statistics when running
    the code on CPU or GPU. For more info, please visit:
      - https://github.com/pytorch/pytorch/issues/76052#issuecomment-1103193548
      - https://discuss.pytorch.org/t/reproducibility-issue-between-intel-and-amd-cpus/144779/9


    You need to install tokenizers following this readme:
        - https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles

    Tokenizer used during training:
        - https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles

    # TODO change the script (or just add skip) when building the env with tokenizers 0.12.0
    """

    def setUp(self):
        super().setUp()
        self.path_bigscience_model = "bigscience/bigscience-small-testing"

    @require_torch
    def test_embeddings(self):
        model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, torch_dtype="auto")  # load in fp32
        model.eval()

        EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN = {
            3478: 0.0002307891845703125,
            368: -0.000568389892578125,
            109586: -0.0003910064697265625,
            35433: -0.000194549560546875,
            2: 0.0004138946533203125,
            77: 0.000659942626953125,
            132619: -0.00031280517578125,
            2175: 0.000457763671875,
            23714: 0.000263214111328125,
            73173: -0.000286102294921875,
            144252: 0.00052642822265625,
        }
        EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN = {
            3478: -0.00921630859375,
            368: -0.010009765625,
            109586: -0.01031494140625,
            35433: -0.01177978515625,
            2: -0.0074462890625,
            77: -0.00848388671875,
            132619: -0.009521484375,
            2175: -0.0074462890625,
            23714: -0.0145263671875,
            73173: -0.007415771484375,
            144252: -0.01007080078125,
        }
        EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX = {
            3478: 0.0128173828125,
            368: 0.01214599609375,
            109586: 0.0111083984375,
            35433: 0.01019287109375,
            2: 0.0157470703125,
            77: 0.0174560546875,
            132619: 0.0078125,
            2175: 0.0113525390625,
            23714: 0.0146484375,
            73173: 0.01116943359375,
            144252: 0.01141357421875,
        }
        EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM = {"value": 0.08203125}

        EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN = {
            132619: -0.00031256675720214844,
            3478: 0.00023090839385986328,
            368: -0.0005702972412109375,
            109586: -0.00039124488830566406,
            35433: -0.000194549560546875,
            2: 0.0004146099090576172,
            2175: 0.0004572868347167969,
            23714: 0.00026416778564453125,
            73173: -0.0002865791320800781,
            144252: 0.0005254745483398438,
            77: 0.0006618499755859375,
        }
        EMBEDDINGS_DS_BEFORE_LN_F_16_MIN = {
            3478: -0.00921630859375,
            368: -0.010009765625,
            109586: -0.01031494140625,
            35433: -0.01177978515625,
            2: -0.0074462890625,
            77: -0.00848388671875,
            132619: -0.009521484375,
            2175: -0.0074462890625,
            23714: -0.0145263671875,
            73173: -0.007415771484375,
            144252: -0.01007080078125,
        }
        EMBEDDINGS_DS_BEFORE_LN_F_16_MAX = {
            3478: 0.0128173828125,
            368: 0.01214599609375,
            109586: 0.0111083984375,
            35433: 0.01019287109375,
            2: 0.0157470703125,
            77: 0.0174560546875,
            132619: 0.0078125,
            2175: 0.0113525390625,
            23714: 0.0146484375,
            73173: 0.01116943359375,
            144252: 0.01141357421875,
        }
        EMBEDDINGS_DS_BEFORE_LN_F_16_SUM = {"value": 0.0821533203125}

        EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN = {
            132619: -0.00031267106533050537,
            3478: 0.00023087859153747559,
            368: -0.0005701072514057159,
            109586: -0.0003911703824996948,
            35433: -0.0001944899559020996,
            2: 0.0004146844148635864,
            2175: 0.00045740045607089996,
            23714: 0.0002641640603542328,
            73173: -0.0002864748239517212,
            144252: 0.0005256589502096176,
            77: 0.0006617321632802486,
        }
        EMBEDDINGS_DS_BEFORE_LN_F_32_MIN = {
            3478: -0.00921630859375,
            368: -0.010009765625,
            109586: -0.01031494140625,
            35433: -0.01177978515625,
            2: -0.0074462890625,
            77: -0.00848388671875,
            132619: -0.009521484375,
            2175: -0.0074462890625,
            23714: -0.0145263671875,
            73173: -0.007415771484375,
            144252: -0.01007080078125,
        }
        EMBEDDINGS_DS_BEFORE_LN_F_32_MAX = {
            3478: 0.0128173828125,
            368: 0.01214599609375,
            109586: 0.0111083984375,
            35433: 0.01019287109375,
            2: 0.0157470703125,
            77: 0.0174560546875,
            132619: 0.0078125,
            2175: 0.0113525390625,
            23714: 0.0146484375,
            73173: 0.01116943359375,
            144252: 0.01141357421875,
        }
        EMBEDDINGS_DS_BEFORE_LN_F_32_SUM = {"value": 0.08217757940292358}

        TEST_EMBEDDINGS = {
            "torch.bfloat16": {
                "mean": EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN,
                "max": EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX,
                "min": EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN,
                "sum": EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM,
            },
            "torch.float32": {
                "mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN,
                "max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX,
                "min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN,
                "sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM,
            },
            "torch.float": {
                "mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN,
                "max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX,
                "min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN,
                "sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM,
            },
            "torch.float16": {
                "mean": EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN,
                "max": EMBEDDINGS_DS_BEFORE_LN_F_16_MAX,
                "min": EMBEDDINGS_DS_BEFORE_LN_F_16_MIN,
                "sum": EMBEDDINGS_DS_BEFORE_LN_F_16_SUM,
            },
        }

        # fmt: off
        EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478]
        # fmt: on

        EMBEDDINGS_DS_AFTER_LN_MEAN = {
            3478: -6.580352783203125e-05,
            368: 0.0001316070556640625,
            109586: -0.00030517578125,
            35433: 4.00543212890625e-05,
            2: -7.2479248046875e-05,
            77: -8.96453857421875e-05,
            132619: 0.0001583099365234375,
            2175: 2.1219253540039062e-05,
            23714: -0.000247955322265625,
            73173: -0.00021839141845703125,
            144252: -0.0001430511474609375,
        }
        EMBEDDINGS_DS_AFTER_LN_MIN = {
            3478: -1.6953125,
            368: -1.6875,
            109586: -1.6875,
            35433: -2.125,
            2: -1.390625,
            77: -1.5390625,
            132619: -1.875,
            2175: -1.4609375,
            23714: -2.296875,
            73173: -1.3515625,
            144252: -1.78125,
        }
        EMBEDDINGS_DS_AFTER_LN_MAX = {
            3478: 2.265625,
            368: 2.28125,
            109586: 1.953125,
            35433: 1.90625,
            2: 2.703125,
            77: 2.828125,
            132619: 1.65625,
            2175: 2.015625,
            23714: 2.234375,
            73173: 2.171875,
            144252: 1.828125,
        }

        EMBEDDINGS_DS_AFTER_LN = {
            "mean": EMBEDDINGS_DS_AFTER_LN_MEAN,
            "min": EMBEDDINGS_DS_AFTER_LN_MIN,
            "max": EMBEDDINGS_DS_AFTER_LN_MAX,
        }

        tensor_ids = torch.LongTensor([EXAMPLE_IDS])
        with torch.no_grad():
            embeddings = model.transformer.word_embeddings(tensor_ids)
            embeddings_ln = model.transformer.word_embeddings_layernorm(embeddings)  #
        # first check the embeddings before LN
        output_dict = {"min": {}, "max": {}, "mean": {}, "sum": {"value": embeddings.sum().item()}}
        for i, idx in enumerate(EXAMPLE_IDS):
            output_dict["min"][idx] = embeddings.min(dim=-1).values[0][i].item()
            output_dict["max"][idx] = embeddings.max(dim=-1).values[0][i].item()
            output_dict["mean"][idx] = embeddings.mean(dim=-1)[0][i].item()

        for key in TEST_EMBEDDINGS[str(model.dtype)].keys():
            self.assertDictEqual(TEST_EMBEDDINGS[str(model.dtype)][key], output_dict[key])

        output_dict_norm = {"min": {}, "max": {}, "mean": {}}
        for i, idx in enumerate(EXAMPLE_IDS):
            output_dict_norm["min"][idx] = embeddings_ln.min(dim=-1).values[0][i].item()
            output_dict_norm["max"][idx] = embeddings_ln.max(dim=-1).values[0][i].item()
            output_dict_norm["mean"][idx] = embeddings_ln.mean(dim=-1)[0][i].item()

        # This test does not pass when places = 2
        for i, key in enumerate(output_dict_norm.keys()):
            for j, idx in enumerate(output_dict[key].keys()):
                self.assertAlmostEqual(EMBEDDINGS_DS_AFTER_LN[key][idx], output_dict_norm[key][idx], places=1)

    @require_torch
    def test_hidden_states_transformers(self):
        cuda_available = torch.cuda.is_available()
        model = BloomModel.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to(
            torch_device
        )
        model.eval()

        # fmt: off
        EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478]
        # fmt: on

        MEAN_VALUE_LAST_LM = -4.3392181396484375e-05
        MIN_MAX_DICT = {"min": -2.0625, "max": 2.75}
        tensor_ids = torch.LongTensor([EXAMPLE_IDS])

        with torch.no_grad():
            logits = model(tensor_ids.to(torch_device))
        output_dict = {
            "min": logits.last_hidden_state.min(dim=-1).values[0][0].item(),
            "max": logits.last_hidden_state.max(dim=-1).values[0][0].item(),
        }

        if cuda_available:
747
            self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=4)
Younes Belkada's avatar
Younes Belkada committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        else:
            self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=3)

        self.assertDictEqual(MIN_MAX_DICT, output_dict)

    @require_torch
    def test_logits(self):
        cuda_available = torch.cuda.is_available()
        model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to(
            torch_device
        )  # load in bf16
        model.eval()

        # fmt: off
        EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478]
        # fmt: on

        MEAN_LOGITS_GPU_1 = -1.823902130126953e-05
        MEAN_LOGITS_GPU_2 = 1.9431114196777344e-05

        tensor_ids = torch.LongTensor([EXAMPLE_IDS]).to(torch_device)
        with torch.no_grad():
            output = model(tensor_ids).logits

        output_gpu_1, output_gpu_2 = output.split(125440, dim=-1)
        if cuda_available:
            self.assertEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1)
            self.assertEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2)
        else:
            self.assertAlmostEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1, places=6)  # 1e-06 precision!!
            self.assertAlmostEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2, places=6)