"Deepspeed/BingBertGlue/pytorch_pretrained_bert/modeling.py" did not exist on "0fc002dfc863089e33ea2dee33b0827046e4d174"
run_squad.py 28.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
""" Finetuning the library models for question-answering on SQuAD (Bert, XLM, XLNet)."""
17
18
19
20
21
22
23

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
24
import glob
25
26
27
28
29
30
31
32
33
34

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
35
36
37
38
39
40
41
42
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
                                  XLNetTokenizer)

from pytorch_transformers import AdamW, WarmupLinearSchedule
43

44
45
46
from utils_squad import (read_squad_examples, convert_examples_to_features,
                         RawResult, write_predictions,
                         RawResultExtended, write_predictions_extended)
47

thomwolf's avatar
thomwolf committed
48
49
50
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
51
52
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

53
54
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
55
56
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
57
58

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
59
60
61
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
thomwolf's avatar
thomwolf committed
62
63
}

thomwolf's avatar
thomwolf committed
64
65
66
67
68
69
70
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

71
72
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
73

74
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
75
76
77
78
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

79
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
80
81
82
83
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
84
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
85
86
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
87
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
88

89
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
90
91
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
92
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
93
94
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
95
96
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
97
98
99
100
101
102
103
104
105
106
107
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
108
109
110
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
111
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
112
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
113
114
115

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
116
117
118
119
120
121
122
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
123
            batch = tuple(t.to(args.device) for t in batch)
124
            inputs = {'input_ids':       batch[0],
125
                      'token_type_ids':  None if args.model_type == 'xlm' else batch[1],  # XLM don't use segment_ids
126
127
128
                      'attention_mask':  batch[2],
                      'start_positions': batch[3],
                      'end_positions':   batch[4]}
129
130
131
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
                               'p_mask':    batch[6]})
thomwolf's avatar
thomwolf committed
132
            ouputs = model(**inputs)
133
            loss = ouputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
thomwolf's avatar
thomwolf committed
134

135
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
136
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
137
138
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
182
183
184
    if args.local_rank in [-1, 0]:
        tb_writer.close()

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
209
210
211
212
213
214
                      'token_type_ids': None if args.model_type == 'xlm' else batch[1],  # XLM don't use segment_ids
                      'attention_mask': batch[2]}
            example_indices = batch[3]
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[4],
                               'p_mask':    batch[5]})
215
216
217
218
219
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
220
221
222
223
224
225
226
227
228
229
230
231
232
            if args.model_type in ['xlnet', 'xlm']:
                # XLNet uses a more complex post-processing procedure
                result = RawResultExtended(unique_id            = unique_id,
                                           start_top_log_probs  = to_list(outputs[0][i]),
                                           start_top_index      = to_list(outputs[1][i]),
                                           end_top_log_probs    = to_list(outputs[2][i]),
                                           end_top_index        = to_list(outputs[3][i]),
                                           cls_logits           = to_list(outputs[4][i]))
            else:
                result = RawResult(unique_id    = unique_id,
                                   start_logits = to_list(outputs[0][i]),
                                   end_logits   = to_list(outputs[1][i]))
            all_results.append(result)
233

thomwolf's avatar
thomwolf committed
234
    # Compute predictions
235
236
237
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
    output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
238
239
240
241
242
243

    if args.model_type in ['xlnet', 'xlm']:
        # XLNet uses a more complex post-processing procedure
        write_predictions_extended(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.predict_file,
244
245
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
246
247
248
249
250
    else:
        write_predictions(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
251

thomwolf's avatar
thomwolf committed
252
    # Evaluate with the official SQuAD script
253
254
255
256
257
258
259
260
261
262
263
    evaluate_options = EVAL_OPTS(data_file=args.predict_file,
                                 pred_file=output_prediction_file,
                                 na_prob_file=output_null_log_odds_file)
    results = evaluate_on_squad(evaluate_options)
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
264
        'dev' if evaluate else 'train',
265
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
266
267
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
268
269
270
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
271
272
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_squad_examples(input_file=input_file,
273
274
                                                is_training=not evaluate,
                                                version_2_with_negative=args.version_2_with_negative)
275
276
277
278
279
280
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                max_seq_length=args.max_seq_length,
                                                doc_stride=args.doc_stride,
                                                max_query_length=args.max_query_length,
                                                is_training=not evaluate)
thomwolf's avatar
thomwolf committed
281
282
283
284
285
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    # Convert to Tensors and build dataset
286
287
288
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
289
290
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
291
    if evaluate:
thomwolf's avatar
thomwolf committed
292
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
293
294
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_example_index, all_cls_index, all_p_mask)
295
296
297
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
298
299
300
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_start_positions, all_end_positions,
                                all_cls_index, all_p_mask)
thomwolf's avatar
thomwolf committed
301

302
303
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
304
305
    return dataset

306
307
308
309
310

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
311
312
313
314
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
315
316
317
318
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
319
320
321
322
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
323
324
325
326
327
328
329
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
330
331
332
333
334
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

335
336
337
338
339
340
341
342
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
343
344
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
345
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
346
                        help="Whether to run eval on the dev set.")
347
348
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
349
    parser.add_argument("--do_lower_case", action='store_true',
350
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
351

352
353
354
355
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
356
357
358
359
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
360
361
362
363
364
365
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
366
367
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
368
369
370
371
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
372
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
373
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
374
375
376
377
378
379
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
380

381
382
383
384
385
386
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
387
    parser.add_argument("--no_cuda", action='store_true',
388
                        help="Whether not to use CUDA when available")
389
390
391
392
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
393
    parser.add_argument('--seed', type=int, default=42,
394
                        help="random seed for initialization")
395

thomwolf's avatar
thomwolf committed
396
    parser.add_argument("--local_rank", type=int, default=-1,
397
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
398
399
400
401
402
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
403
404
405
406
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
407
408
409
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

410
    # Setup distant debugging if needed
411
412
413
414
415
416
417
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
418
    # Setup CUDA, GPU & distributed training
419
420
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
421
422
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
423
424
425
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
426
427
        args.n_gpu = 1
    args.device = device
428

thomwolf's avatar
thomwolf committed
429
    # Setup logging
430
431
432
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
433
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
434
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
435

436
437
    # Set seed
    set_seed(args)
438

thomwolf's avatar
thomwolf committed
439
    # Load pretrained model and tokenizer
440
    if args.local_rank not in [-1, 0]:
441
442
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

443
    args.model_type = args.model_type.lower()
444
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
445
446
447
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
448
449

    if args.local_rank == 0:
450
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
451

thomwolf's avatar
thomwolf committed
452
453
    # Distributed and parrallel training
    model.to(args.device)
454
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
455
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
456
457
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
thomwolf's avatar
thomwolf committed
458
    elif args.n_gpu > 1:
459
460
        model = torch.nn.DataParallel(model)

461
462
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
463
    # Training
464
    if args.do_train:
465
466
467
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
468

469

thomwolf's avatar
thomwolf committed
470
    # Save the trained model and the tokenizer
471
472
473
474
475
476
477
478
479
480
481
    if args.local_rank == -1 or torch.distributed.get_rank() == 0:
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
482
483

        # Good practice: save your training arguments together with the trained model
484
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
485

486
487
488
489
490
491
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)


thomwolf's avatar
thomwolf committed
492
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
493
494
495
496
497
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
thomwolf's avatar
thomwolf committed
498
499
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs

500
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
501

502
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
503
            # Reload the model
504
505
506
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
507
508

            # Evaluate
509
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
510

511
512
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
513

514
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
515

516
    return results
517
518
519
520


if __name__ == "__main__":
    main()