tokenization_xxx.py 9.46 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright 2018 XXX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model XXX."""

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import logging
import os
import unicodedata
from io import open

from .tokenization_utils import PreTrainedTokenizer

Aymeric Augustin's avatar
Aymeric Augustin committed
27

thomwolf's avatar
thomwolf committed
28
29
30
31
32
33
34
35
36
37
logger = logging.getLogger(__name__)

####################################################
# In this template, replace all the XXX (various casings) with your model name
####################################################

####################################################
# Mapping from the keyword arguments names of Tokenizer `__init__`
# to file names for serializing Tokenizer instances
####################################################
38
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
thomwolf's avatar
thomwolf committed
39
40
41
42
43
44

####################################################
# Mapping from the keyword arguments names of Tokenizer `__init__`
# to pretrained vocabulary URL for all the model shortcut names.
####################################################
PRETRAINED_VOCAB_FILES_MAP = {
45
46
47
    "vocab_file": {
        "xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-vocab.txt",
        "xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-vocab.txt",
thomwolf's avatar
thomwolf committed
48
49
50
51
52
53
54
    }
}

####################################################
# Mapping from model shortcut names to max length of inputs
####################################################
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
55
56
    "xxx-base-uncased": 512,
    "xxx-large-uncased": 512,
thomwolf's avatar
thomwolf committed
57
58
59
60
61
62
63
64
}

####################################################
# Mapping from model shortcut names to a dictionary of additional
# keyword arguments for Tokenizer `__init__`.
# To be used for checkpoint specific configurations.
####################################################
PRETRAINED_INIT_CONFIGURATION = {
65
66
    "xxx-base-uncased": {"do_lower_case": True},
    "xxx-large-uncased": {"do_lower_case": True},
thomwolf's avatar
thomwolf committed
67
68
69
70
71
72
73
74
75
}


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
76
        token = token.rstrip("\n")
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
83
84
85
86
87
        vocab[token] = index
    return vocab


class XxxTokenizer(PreTrainedTokenizer):
    r"""
    Constructs a XxxTokenizer.
    :class:`~transformers.XxxTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece

    Args:
        vocab_file: Path to a one-wordpiece-per-line vocabulary file
Julien Chaumond's avatar
Julien Chaumond committed
88
        do_lower_case: Whether to lower case the input. Only has an effect when do_basic_tokenize=True
thomwolf's avatar
thomwolf committed
89
90
91
92
93
94
95
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

96
97
98
99
100
101
102
103
104
105
106
    def __init__(
        self,
        vocab_file,
        do_lower_case=True,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        **kwargs
    ):
thomwolf's avatar
thomwolf committed
107
108
109
110
111
112
113
114
        """Constructs a XxxTokenizer.

        Args:
            **vocab_file**: Path to a one-wordpiece-per-line vocabulary file
            **do_lower_case**: (`optional`) boolean (default True)
                Whether to lower case the input
                Only has an effect when do_basic_tokenize=True
        """
115
116
117
118
119
120
121
122
        super(XxxTokenizer, self).__init__(
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            **kwargs
        )
thomwolf's avatar
thomwolf committed
123
124
125
126
127
128
        self.max_len_single_sentence = self.max_len - 2  # take into account special tokens
        self.max_len_sentences_pair = self.max_len - 3  # take into account special tokens

        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
129
130
                "model use `tokenizer = XxxTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)
            )
thomwolf's avatar
thomwolf committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        self.vocab = load_vocab(vocab_file)

    @property
    def vocab_size(self):
        return len(self.vocab)

    def _tokenize(self, text):
        """ Take as input a string and return a list of strings (tokens) for words/sub-words
        """
        split_tokens = []
        if self.do_basic_tokenize:
            for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
                for sub_token in self.wordpiece_tokenizer.tokenize(token):
                    split_tokens.append(sub_token)
        else:
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
        return split_tokens

    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.ids_to_tokens.get(index, self.unk_token)

    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
159
        out_string = " ".join(tokens).replace(" ##", "").strip()
thomwolf's avatar
thomwolf committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        return out_string

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks
        by concatenating and adding special tokens.
        A BERT sequence has the following format:
            single sequence: [CLS] X [SEP]
            pair of sequences: [CLS] A [SEP] B [SEP]
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + token_ids_1 + sep

    def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
        """
        Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.

        Args:
            token_ids_0: list of ids (must not contain special tokens)
            token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
                for sequence pairs
            already_has_special_tokens: (default False) Set to True if the token list is already formated with
                special tokens for the model

        Returns:
Lysandre's avatar
Lysandre committed
189
            A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
thomwolf's avatar
thomwolf committed
190
191
192
193
        """

        if already_has_special_tokens:
            if token_ids_1 is not None:
194
195
196
197
                raise ValueError(
                    "You should not supply a second sequence if the provided sequence of "
                    "ids is already formated with special tokens for the model."
                )
thomwolf's avatar
thomwolf committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]

    def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
        """
        Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
        A BERT sequence pair mask has the following format:
        0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence

        if token_ids_1 is None, only returns the first portion of the mask (0's).
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self, vocab_path):
        """Save the tokenizer vocabulary to a directory or file."""
        index = 0
        if os.path.isdir(vocab_path):
223
            vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"])
thomwolf's avatar
thomwolf committed
224
225
226
227
228
        else:
            vocab_file = vocab_path
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
229
230
231
232
                    logger.warning(
                        "Saving vocabulary to {}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!".format(vocab_file)
                    )
thomwolf's avatar
thomwolf committed
233
                    index = token_index
234
                writer.write(token + "\n")
thomwolf's avatar
thomwolf committed
235
236
                index += 1
        return (vocab_file,)