run_tf_ner.py 26 KB
Newer Older
1
# coding=utf-8
Aymeric Augustin's avatar
Aymeric Augustin committed
2
3
import _pickle as pickle
import collections
4
5
import datetime
import glob
Aymeric Augustin's avatar
Aymeric Augustin committed
6
7
import math
import os
8
import re
Aymeric Augustin's avatar
Aymeric Augustin committed
9

10
import numpy as np
Aymeric Augustin's avatar
Aymeric Augustin committed
11
12
13
14
import tensorflow as tf
from absl import app, flags, logging

from fastprogress import master_bar, progress_bar
15
from seqeval import metrics
Aymeric Augustin's avatar
Aymeric Augustin committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from transformers import (
    TF2_WEIGHTS_NAME,
    BertConfig,
    BertTokenizer,
    DistilBertConfig,
    DistilBertTokenizer,
    GradientAccumulator,
    RobertaConfig,
    RobertaTokenizer,
    TFBertForTokenClassification,
    TFDistilBertForTokenClassification,
    TFRobertaForTokenClassification,
    create_optimizer,
)
30
31
32
33
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file


ALL_MODELS = sum(
34
35
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, DistilBertConfig)), ()
)
36
37
38
39

MODEL_CLASSES = {
    "bert": (BertConfig, TFBertForTokenClassification, BertTokenizer),
    "roberta": (RobertaConfig, TFRobertaForTokenClassification, RobertaTokenizer),
40
    "distilbert": (DistilBertConfig, TFDistilBertForTokenClassification, DistilBertTokenizer),
41
42
43
44
}


flags.DEFINE_string(
45
46
    "data_dir", None, "The input data dir. Should contain the .conll files (or other data files) " "for the task."
)
47

48
flags.DEFINE_string("model_type", None, "Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
49
50

flags.DEFINE_string(
51
52
53
54
    "model_name_or_path",
    None,
    "Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
)
55

56
flags.DEFINE_string("output_dir", None, "The output directory where the model checkpoints will be written.")
57
58

flags.DEFINE_string(
59
60
    "labels", "", "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."
)
61

62
flags.DEFINE_string("config_name", "", "Pretrained config name or path if not the same as model_name")
63

64
flags.DEFINE_string("tokenizer_name", "", "Pretrained tokenizer name or path if not the same as model_name")
65

66
flags.DEFINE_string("cache_dir", "", "Where do you want to store the pre-trained models downloaded from s3")
67
68

flags.DEFINE_integer(
69
70
    "max_seq_length",
    128,
71
72
    "The maximum total input sentence length after tokenization. "
    "Sequences longer than this will be truncated, sequences shorter "
73
74
    "will be padded.",
)
75
76

flags.DEFINE_string(
77
78
    "tpu",
    None,
79
80
    "The Cloud TPU to use for training. This should be either the name "
    "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
81
82
    "url.",
)
83

84
flags.DEFINE_integer("num_tpu_cores", 8, "Total number of TPU cores to use.")
85

86
flags.DEFINE_boolean("do_train", False, "Whether to run training.")
87

88
flags.DEFINE_boolean("do_eval", False, "Whether to run eval on the dev set.")
89

90
flags.DEFINE_boolean("do_predict", False, "Whether to run predictions on the test set.")
91
92

flags.DEFINE_boolean(
93
94
    "evaluate_during_training", False, "Whether to run evaluation during training at each logging step."
)
95

96
flags.DEFINE_boolean("do_lower_case", False, "Set this flag if you are using an uncased model.")
97

98
flags.DEFINE_integer("per_device_train_batch_size", 8, "Batch size per GPU/CPU/TPU for training.")
99

100
flags.DEFINE_integer("per_device_eval_batch_size", 8, "Batch size per GPU/CPU/TPU for evaluation.")
101
102

flags.DEFINE_integer(
103
104
    "gradient_accumulation_steps", 1, "Number of updates steps to accumulate before performing a backward/update pass."
)
105

106
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
107

108
flags.DEFINE_float("weight_decay", 0.0, "Weight decay if we apply some.")
109

110
flags.DEFINE_float("adam_epsilon", 1e-8, "Epsilon for Adam optimizer.")
111

112
flags.DEFINE_float("max_grad_norm", 1.0, "Max gradient norm.")
113

114
flags.DEFINE_integer("num_train_epochs", 3, "Total number of training epochs to perform.")
115
116

flags.DEFINE_integer(
117
118
    "max_steps", -1, "If > 0: set total number of training steps to perform. Override num_train_epochs."
)
119

120
flags.DEFINE_integer("warmup_steps", 0, "Linear warmup over warmup_steps.")
121

122
flags.DEFINE_integer("logging_steps", 50, "Log every X updates steps.")
123

124
flags.DEFINE_integer("save_steps", 50, "Save checkpoint every X updates steps.")
125
126

flags.DEFINE_boolean(
127
128
129
130
    "eval_all_checkpoints",
    False,
    "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
131

132
flags.DEFINE_boolean("no_cuda", False, "Avoid using CUDA when available")
133

134
flags.DEFINE_boolean("overwrite_output_dir", False, "Overwrite the content of the output directory")
135

136
flags.DEFINE_boolean("overwrite_cache", False, "Overwrite the cached training and evaluation sets")
137

138
flags.DEFINE_integer("seed", 42, "random seed for initialization")
139

140
flags.DEFINE_boolean("fp16", False, "Whether to use 16-bit (mixed) precision instead of 32-bit")
141
142

flags.DEFINE_string(
143
144
    "gpus",
    "0",
145
    "Comma separated list of gpus devices. If only one, switch to single "
146
147
    "gpu strategy, if None takes all the gpus available.",
)
148
149


150
151
152
153
154
155
def train(
    args, strategy, train_dataset, tokenizer, model, num_train_examples, labels, train_batch_size, pad_token_label_id
):
    if args["max_steps"] > 0:
        num_train_steps = args["max_steps"] * args["gradient_accumulation_steps"]
        args["num_train_epochs"] = 1
156
    else:
157
158
159
160
161
        num_train_steps = (
            math.ceil(num_train_examples / train_batch_size)
            // args["gradient_accumulation_steps"]
            * args["num_train_epochs"]
        )
162
163
164
165
166

    writer = tf.summary.create_file_writer("/tmp/mylogs")

    with strategy.scope():
        loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)
167
        optimizer = create_optimizer(args["learning_rate"], num_train_steps, args["warmup_steps"])
168

169
170
        if args["fp16"]:
            optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(optimizer, "dynamic")
171

172
        loss_metric = tf.keras.metrics.Mean(name="loss", dtype=tf.float32)
173
        gradient_accumulator = GradientAccumulator()
174

175
176
    logging.info("***** Running training *****")
    logging.info("  Num examples = %d", num_train_examples)
177
178
179
180
181
182
183
    logging.info("  Num Epochs = %d", args["num_train_epochs"])
    logging.info("  Instantaneous batch size per device = %d", args["per_device_train_batch_size"])
    logging.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        train_batch_size * args["gradient_accumulation_steps"],
    )
    logging.info("  Gradient Accumulation steps = %d", args["gradient_accumulation_steps"])
184
185
186
187
188
189
190
191
192
193
    logging.info("  Total training steps = %d", num_train_steps)

    model.summary()

    @tf.function
    def apply_gradients():
        grads_and_vars = []

        for gradient, variable in zip(gradient_accumulator.gradients, model.trainable_variables):
            if gradient is not None:
194
                scaled_gradient = gradient / (args["n_device"] * args["gradient_accumulation_steps"])
195
196
197
198
                grads_and_vars.append((scaled_gradient, variable))
            else:
                grads_and_vars.append((gradient, variable))

199
        optimizer.apply_gradients(grads_and_vars, args["max_grad_norm"])
200
201
202
203
204
        gradient_accumulator.reset()

    @tf.function
    def train_step(train_features, train_labels):
        def step_fn(train_features, train_labels):
205
            inputs = {"attention_mask": train_features["input_mask"], "training": True}
206

207
208
209
210
            if args["model_type"] != "distilbert":
                inputs["token_type_ids"] = (
                    train_features["segment_ids"] if args["model_type"] in ["bert", "xlnet"] else None
                )
211
212

            with tf.GradientTape() as tape:
213
                logits = model(train_features["input_ids"], **inputs)[0]
214
                logits = tf.reshape(logits, (-1, len(labels) + 1))
215
                active_loss = tf.reshape(train_features["input_mask"], (-1,))
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
                active_logits = tf.boolean_mask(logits, active_loss)
                train_labels = tf.reshape(train_labels, (-1,))
                active_labels = tf.boolean_mask(train_labels, active_loss)
                cross_entropy = loss_fct(active_labels, active_logits)
                loss = tf.reduce_sum(cross_entropy) * (1.0 / train_batch_size)
                grads = tape.gradient(loss, model.trainable_variables)

                gradient_accumulator(grads)

            return cross_entropy

        per_example_losses = strategy.experimental_run_v2(step_fn, args=(train_features, train_labels))
        mean_loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, per_example_losses, axis=0)

        return mean_loss

    current_time = datetime.datetime.now()
233
    train_iterator = master_bar(range(args["num_train_epochs"]))
234
235
236
237
    global_step = 0
    logging_loss = 0.0

    for epoch in train_iterator:
238
239
240
        epoch_iterator = progress_bar(
            train_dataset, total=num_train_steps, parent=train_iterator, display=args["n_device"] > 1
        )
241
242
243
244
245
246
        step = 1

        with strategy.scope():
            for train_features, train_labels in epoch_iterator:
                loss = train_step(train_features, train_labels)

247
                if step % args["gradient_accumulation_steps"] == 0:
248
249
250
251
252
253
                    strategy.experimental_run_v2(apply_gradients)

                    loss_metric(loss)

                    global_step += 1

254
                    if args["logging_steps"] > 0 and global_step % args["logging_steps"] == 0:
255
                        # Log metrics
256
257
258
259
260
261
                        if (
                            args["n_device"] == 1 and args["evaluate_during_training"]
                        ):  # Only evaluate when single GPU otherwise metrics may not average well
                            y_true, y_pred, eval_loss = evaluate(
                                args, strategy, model, tokenizer, labels, pad_token_label_id, mode="dev"
                            )
262
                            report = metrics.classification_report(y_true, y_pred, digits=4)
263

264
265
                            logging.info("Eval at step " + str(global_step) + "\n" + report)
                            logging.info("eval_loss: " + str(eval_loss))
266

267
268
269
270
271
272
273
274
275
                            precision = metrics.precision_score(y_true, y_pred)
                            recall = metrics.recall_score(y_true, y_pred)
                            f1 = metrics.f1_score(y_true, y_pred)

                            with writer.as_default():
                                tf.summary.scalar("eval_loss", eval_loss, global_step)
                                tf.summary.scalar("precision", precision, global_step)
                                tf.summary.scalar("recall", recall, global_step)
                                tf.summary.scalar("f1", f1, global_step)
276

277
278
279
280
281
                        lr = optimizer.learning_rate
                        learning_rate = lr(step)

                        with writer.as_default():
                            tf.summary.scalar("lr", learning_rate, global_step)
282
283
284
285
                            tf.summary.scalar(
                                "loss", (loss_metric.result() - logging_loss) / args["logging_steps"], global_step
                            )

286
287
288
289
290
                        logging_loss = loss_metric.result()

                    with writer.as_default():
                        tf.summary.scalar("loss", loss_metric.result(), step=step)

291
                    if args["save_steps"] > 0 and global_step % args["save_steps"] == 0:
292
                        # Save model checkpoint
293
                        output_dir = os.path.join(args["output_dir"], "checkpoint-{}".format(global_step))
294
295
296

                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
297

298
299
                        model.save_pretrained(output_dir)
                        logging.info("Saving model checkpoint to %s", output_dir)
300
301

                train_iterator.child.comment = f"loss : {loss_metric.result()}"
302
303
                step += 1

304
        train_iterator.write(f"loss epoch {epoch + 1}: {loss_metric.result()}")
305
306
307
308
309
310
311

        loss_metric.reset_states()

    logging.info("  Training took time = {}".format(datetime.datetime.now() - current_time))


def evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode):
312
313
314
315
    eval_batch_size = args["per_device_eval_batch_size"] * args["n_device"]
    eval_dataset, size = load_and_cache_examples(
        args, tokenizer, labels, pad_token_label_id, eval_batch_size, mode=mode
    )
316
317
318
319
    eval_dataset = strategy.experimental_distribute_dataset(eval_dataset)
    preds = None
    num_eval_steps = math.ceil(size / eval_batch_size)
    master = master_bar(range(1))
320
    eval_iterator = progress_bar(eval_dataset, total=num_eval_steps, parent=master, display=args["n_device"] > 1)
321
322
323
324
325
326
327
328
    loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)
    loss = 0.0

    logging.info("***** Running evaluation *****")
    logging.info("  Num examples = %d", size)
    logging.info("  Batch size = %d", eval_batch_size)

    for eval_features, eval_labels in eval_iterator:
329
        inputs = {"attention_mask": eval_features["input_mask"], "training": False}
330

331
332
333
334
        if args["model_type"] != "distilbert":
            inputs["token_type_ids"] = (
                eval_features["segment_ids"] if args["model_type"] in ["bert", "xlnet"] else None
            )
335
336

        with strategy.scope():
337
            logits = model(eval_features["input_ids"], **inputs)[0]
338
            tmp_logits = tf.reshape(logits, (-1, len(labels) + 1))
339
            active_loss = tf.reshape(eval_features["input_mask"], (-1,))
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            active_logits = tf.boolean_mask(tmp_logits, active_loss)
            tmp_eval_labels = tf.reshape(eval_labels, (-1,))
            active_labels = tf.boolean_mask(tmp_eval_labels, active_loss)
            cross_entropy = loss_fct(active_labels, active_logits)
            loss += tf.reduce_sum(cross_entropy) * (1.0 / eval_batch_size)

        if preds is None:
            preds = logits.numpy()
            label_ids = eval_labels.numpy()
        else:
            preds = np.append(preds, logits.numpy(), axis=0)
            label_ids = np.append(label_ids, eval_labels.numpy(), axis=0)

    preds = np.argmax(preds, axis=2)
    y_pred = [[] for _ in range(label_ids.shape[0])]
    y_true = [[] for _ in range(label_ids.shape[0])]
    loss = loss / num_eval_steps

    for i in range(label_ids.shape[0]):
        for j in range(label_ids.shape[1]):
            if label_ids[i, j] != pad_token_label_id:
                y_pred[i].append(labels[preds[i, j] - 1])
                y_true[i].append(labels[label_ids[i, j] - 1])

    return y_true, y_pred, loss.numpy()


def load_cache(cached_file, max_seq_length):
    name_to_features = {
        "input_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
        "input_mask": tf.io.FixedLenFeature([max_seq_length], tf.int64),
        "segment_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
        "label_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
    }

    def _decode_record(record):
        example = tf.io.parse_single_example(record, name_to_features)
        features = {}
378
379
380
        features["input_ids"] = example["input_ids"]
        features["input_mask"] = example["input_mask"]
        features["segment_ids"] = example["segment_ids"]
381

382
        return features, example["label_ids"]
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

    d = tf.data.TFRecordDataset(cached_file)
    d = d.map(_decode_record, num_parallel_calls=4)
    count = d.reduce(0, lambda x, _: x + 1)

    return d, count.numpy()


def save_cache(features, cached_features_file):
    writer = tf.io.TFRecordWriter(cached_features_file)

    for (ex_index, feature) in enumerate(features):
        if ex_index % 5000 == 0:
            logging.info("Writing example %d of %d" % (ex_index, len(features)))

        def create_int_feature(values):
            f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
            return f

        record_feature = collections.OrderedDict()
        record_feature["input_ids"] = create_int_feature(feature.input_ids)
        record_feature["input_mask"] = create_int_feature(feature.input_mask)
        record_feature["segment_ids"] = create_int_feature(feature.segment_ids)
        record_feature["label_ids"] = create_int_feature(feature.label_ids)

        tf_example = tf.train.Example(features=tf.train.Features(feature=record_feature))

        writer.write(tf_example.SerializeToString())

    writer.close()


def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, batch_size, mode):
416
    drop_remainder = True if args["tpu"] or mode == "train" else False
417
418

    # Load data features from cache or dataset file
419
420
421
422
423
424
425
    cached_features_file = os.path.join(
        args["data_dir"],
        "cached_{}_{}_{}.tf_record".format(
            mode, list(filter(None, args["model_name_or_path"].split("/"))).pop(), str(args["max_seq_length"])
        ),
    )
    if os.path.exists(cached_features_file) and not args["overwrite_cache"]:
426
        logging.info("Loading features from cached file %s", cached_features_file)
427
        dataset, size = load_cache(cached_features_file, args["max_seq_length"])
428
    else:
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        logging.info("Creating features from dataset file at %s", args["data_dir"])
        examples = read_examples_from_file(args["data_dir"], mode)
        features = convert_examples_to_features(
            examples,
            labels,
            args["max_seq_length"],
            tokenizer,
            cls_token_at_end=bool(args["model_type"] in ["xlnet"]),
            # xlnet has a cls token at the end
            cls_token=tokenizer.cls_token,
            cls_token_segment_id=2 if args["model_type"] in ["xlnet"] else 0,
            sep_token=tokenizer.sep_token,
            sep_token_extra=bool(args["model_type"] in ["roberta"]),
            # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
            pad_on_left=bool(args["model_type"] in ["xlnet"]),
            # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args["model_type"] in ["xlnet"] else 0,
            pad_token_label_id=pad_token_label_id,
        )
449
450
        logging.info("Saving features into cached file %s", cached_features_file)
        save_cache(features, cached_features_file)
451
        dataset, size = load_cache(cached_features_file, args["max_seq_length"])
452

453
    if mode == "train":
454
        dataset = dataset.repeat()
455
        dataset = dataset.shuffle(buffer_size=8192, seed=args["seed"])
456
457
458
459
460
461
462
463
464
465
466

    dataset = dataset.batch(batch_size, drop_remainder)
    dataset = dataset.prefetch(buffer_size=batch_size)

    return dataset, size


def main(_):
    logging.set_verbosity(logging.INFO)
    args = flags.FLAGS.flag_values_dict()

467
468
469
470
471
472
    if (
        os.path.exists(args["output_dir"])
        and os.listdir(args["output_dir"])
        and args["do_train"]
        and not args["overwrite_output_dir"]
    ):
473
474
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
475
476
477
                args["output_dir"]
            )
        )
478

479
    if args["fp16"]:
480
481
        tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True})

482
483
    if args["tpu"]:
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=args["tpu"])
484
485
486
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)
487
488
489
490
491
492
        args["n_device"] = args["num_tpu_cores"]
    elif len(args["gpus"].split(",")) > 1:
        args["n_device"] = len([f"/gpu:{gpu}" for gpu in args["gpus"].split(",")])
        strategy = tf.distribute.MirroredStrategy(devices=[f"/gpu:{gpu}" for gpu in args["gpus"].split(",")])
    elif args["no_cuda"]:
        args["n_device"] = 1
493
494
        strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0")
    else:
495
496
        args["n_device"] = len(args["gpus"].split(","))
        strategy = tf.distribute.OneDeviceStrategy(device="/gpu:" + args["gpus"].split(",")[0])
497

498
499
500
501
502
503
    logging.warning(
        "n_device: %s, distributed training: %s, 16-bits training: %s",
        args["n_device"],
        bool(args["n_device"] > 1),
        args["fp16"],
    )
504

505
    labels = get_labels(args["labels"])
506
507
    num_labels = len(labels) + 1
    pad_token_label_id = 0
508
509
510
511
512
513
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args["model_type"]]
    config = config_class.from_pretrained(
        args["config_name"] if args["config_name"] else args["model_name_or_path"],
        num_labels=num_labels,
        cache_dir=args["cache_dir"] if args["cache_dir"] else None,
    )
514
515
516
517

    logging.info("Training/evaluation parameters %s", args)

    # Training
518
519
520
521
522
523
    if args["do_train"]:
        tokenizer = tokenizer_class.from_pretrained(
            args["tokenizer_name"] if args["tokenizer_name"] else args["model_name_or_path"],
            do_lower_case=args["do_lower_case"],
            cache_dir=args["cache_dir"] if args["cache_dir"] else None,
        )
524
525

        with strategy.scope():
526
527
528
529
530
531
            model = model_class.from_pretrained(
                args["model_name_or_path"],
                from_pt=bool(".bin" in args["model_name_or_path"]),
                config=config,
                cache_dir=args["cache_dir"] if args["cache_dir"] else None,
            )
532
533
            model.layers[-1].activation = tf.keras.activations.softmax

534
535
536
537
        train_batch_size = args["per_device_train_batch_size"] * args["n_device"]
        train_dataset, num_train_examples = load_and_cache_examples(
            args, tokenizer, labels, pad_token_label_id, train_batch_size, mode="train"
        )
538
        train_dataset = strategy.experimental_distribute_dataset(train_dataset)
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        train(
            args,
            strategy,
            train_dataset,
            tokenizer,
            model,
            num_train_examples,
            labels,
            train_batch_size,
            pad_token_label_id,
        )

        if not os.path.exists(args["output_dir"]):
            os.makedirs(args["output_dir"])

        logging.info("Saving model to %s", args["output_dir"])

        model.save_pretrained(args["output_dir"])
        tokenizer.save_pretrained(args["output_dir"])
558
559

    # Evaluation
560
561
    if args["do_eval"]:
        tokenizer = tokenizer_class.from_pretrained(args["output_dir"], do_lower_case=args["do_lower_case"])
562
563
564
        checkpoints = []
        results = []

565
566
567
568
569
570
571
572
573
        if args["eval_all_checkpoints"]:
            checkpoints = list(
                os.path.dirname(c)
                for c in sorted(
                    glob.glob(args["output_dir"] + "/**/" + TF2_WEIGHTS_NAME, recursive=True),
                    key=lambda f: int("".join(filter(str.isdigit, f)) or -1),
                )
            )

574
        logging.info("Evaluate the following checkpoints: %s", checkpoints)
575
576

        if len(checkpoints) == 0:
577
578
            checkpoints.append(args["output_dir"])

579
580
581
582
583
584
        for checkpoint in checkpoints:
            global_step = checkpoint.split("-")[-1] if re.match(".*checkpoint-[0-9]", checkpoint) else "final"

            with strategy.scope():
                model = model_class.from_pretrained(checkpoint)

585
586
587
            y_true, y_pred, eval_loss = evaluate(
                args, strategy, model, tokenizer, labels, pad_token_label_id, mode="dev"
            )
588
589
590
591
592
            report = metrics.classification_report(y_true, y_pred, digits=4)

            if global_step:
                results.append({global_step + "_report": report, global_step + "_loss": eval_loss})

593
594
        output_eval_file = os.path.join(args["output_dir"], "eval_results.txt")

595
596
597
598
599
600
601
602
603
604
605
606
607
608
        with tf.io.gfile.GFile(output_eval_file, "w") as writer:
            for res in results:
                for key, val in res.items():
                    if "loss" in key:
                        logging.info(key + " = " + str(val))
                        writer.write(key + " = " + str(val))
                        writer.write("\n")
                    else:
                        logging.info(key)
                        logging.info("\n" + report)
                        writer.write(key + "\n")
                        writer.write(report)
                        writer.write("\n")

609
610
611
612
613
614
615
    if args["do_predict"]:
        tokenizer = tokenizer_class.from_pretrained(args["output_dir"], do_lower_case=args["do_lower_case"])
        model = model_class.from_pretrained(args["output_dir"])
        eval_batch_size = args["per_device_eval_batch_size"] * args["n_device"]
        predict_dataset, _ = load_and_cache_examples(
            args, tokenizer, labels, pad_token_label_id, eval_batch_size, mode="test"
        )
616
        y_true, y_pred, pred_loss = evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode="test")
617
618
        output_test_results_file = os.path.join(args["output_dir"], "test_results.txt")
        output_test_predictions_file = os.path.join(args["output_dir"], "test_predictions.txt")
619
620
621
622
        report = metrics.classification_report(y_true, y_pred, digits=4)

        with tf.io.gfile.GFile(output_test_results_file, "w") as writer:
            report = metrics.classification_report(y_true, y_pred, digits=4)
623

624
            logging.info("\n" + report)
625

626
627
628
629
            writer.write(report)
            writer.write("\n\nloss = " + str(pred_loss))

        with tf.io.gfile.GFile(output_test_predictions_file, "w") as writer:
630
            with tf.io.gfile.GFile(os.path.join(args["data_dir"], "test.txt"), "r") as f:
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

                        if not y_pred[example_id]:
                            example_id += 1
                    elif y_pred[example_id]:
                        output_line = line.split()[0] + " " + y_pred[example_id].pop(0) + "\n"
                        writer.write(output_line)
                    else:
                        logging.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])


if __name__ == "__main__":
    flags.mark_flag_as_required("data_dir")
    flags.mark_flag_as_required("output_dir")
    flags.mark_flag_as_required("model_name_or_path")
    flags.mark_flag_as_required("model_type")
    app.run(main)