test_modeling_auto.py 7.58 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
21

Julien Chaumond's avatar
Julien Chaumond committed
22
from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_torch, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24

25
if is_torch_available():
26
27
28
29
30
    from transformers import (
        AutoConfig,
        BertConfig,
        AutoModel,
        BertModel,
thomwolf's avatar
thomwolf committed
31
32
        AutoModelForPreTraining,
        BertForPreTraining,
33
34
        AutoModelWithLMHead,
        BertForMaskedLM,
Julien Chaumond's avatar
Julien Chaumond committed
35
        RobertaForMaskedLM,
36
37
38
39
        AutoModelForSequenceClassification,
        BertForSequenceClassification,
        AutoModelForQuestionAnswering,
        BertForQuestionAnswering,
40
41
        AutoModelForTokenClassification,
        BertForTokenClassification,
42
    )
43
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
Lysandre's avatar
Lysandre committed
44
45
46
47
48
49
50
51
    from transformers.modeling_auto import (
        MODEL_MAPPING,
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        MODEL_WITH_LM_HEAD_MAPPING,
    )
thomwolf's avatar
thomwolf committed
52
53


54
@require_torch
thomwolf's avatar
thomwolf committed
55
class AutoModelTest(unittest.TestCase):
56
    @slow
thomwolf's avatar
thomwolf committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    def test_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
78
79
80
81
82
    @slow
    def test_model_for_pretraining_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
83
84
85
            for key, value in loading_info.items():
                # Only one value should not be initialized and in the missing keys.
                self.assertEqual(len(value), 1 if key == "missing_keys" else 0)
thomwolf's avatar
thomwolf committed
86

87
    @slow
LysandreJik's avatar
LysandreJik committed
88
89
90
91
92
93
94
95
96
97
98
99
    def test_lmhead_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

100
    @slow
LysandreJik's avatar
LysandreJik committed
101
102
103
104
105
106
107
108
    def test_sequence_classification_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
109
110
111
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
112
113
114
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

115
    @slow
LysandreJik's avatar
LysandreJik committed
116
117
118
119
120
121
122
123
124
125
126
127
    def test_question_answering_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

128
129
130
131
132
133
134
135
136
137
138
139
140
    @slow
    def test_token_classification_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
141
142
143
144
    def test_from_pretrained_identifier(self):
        logging.basicConfig(level=logging.INFO)
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
Julien Chaumond's avatar
Julien Chaumond committed
145
146
        self.assertEqual(model.num_parameters(), 14830)
        self.assertEqual(model.num_parameters(only_trainable=True), 14830)
Julien Chaumond's avatar
Julien Chaumond committed
147
148
149
150
151
152
153

    def test_from_identifier_from_model_type(self):
        logging.basicConfig(level=logging.INFO)
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
        self.assertIsInstance(model, RobertaForMaskedLM)
        self.assertEqual(model.num_parameters(), 14830)
        self.assertEqual(model.num_parameters(only_trainable=True), 14830)
Lysandre's avatar
Lysandre committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models

        mappings = (
            MODEL_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
                    with self.subTest(
                        msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__)
                    ):
                        self.assertFalse(issubclass(child_config, parent_config))
                        self.assertFalse(issubclass(child_model, parent_model))