test_modeling_tf_xlnet.py 14.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import XLNetConfig, is_tf_available
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25
26
from .utils import CACHE_DIR, require_tf, slow


thomwolf's avatar
thomwolf committed
27
28
29
if is_tf_available():
    import tensorflow as tf

30
31
32
33
34
35
36
37
38
    from transformers.modeling_tf_xlnet import (
        TFXLNetModel,
        TFXLNetLMHeadModel,
        TFXLNetForSequenceClassification,
        TFXLNetForTokenClassification,
        TFXLNetForQuestionAnsweringSimple,
        TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
    )

39
40

@require_tf
41
class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
42

43
44
45
46
47
48
49
50
51
52
53
    all_model_classes = (
        (
            TFXLNetModel,
            TFXLNetLMHeadModel,
            TFXLNetForSequenceClassification,
            TFXLNetForTokenClassification,
            TFXLNetForQuestionAnsweringSimple,
        )
        if is_tf_available()
        else ()
    )
54
55
56
    all_generative_model_classes = (
        (TFXLNetLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
57
58
59
    test_pruning = False

    class TFXLNetModelTester(object):
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=10,
            clamp_len=-1,
            reuse_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            num_attention_heads=4,
            d_inner=128,
            num_hidden_layers=5,
            type_sequence_label_size=2,
            untie_r=True,
            bi_data=False,
            same_length=False,
            initializer_range=0.05,
            seed=1,
            type_vocab_size=2,
83
84
85
            bos_token_id=1,
            eos_token_id=2,
            pad_token_id=5,
86
        ):
thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
            # self.key_len = seq_length + mem_len
            self.clamp_len = clamp_len
            self.reuse_len = reuse_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.hidden_size = hidden_size
            self.num_attention_heads = num_attention_heads
            self.d_inner = d_inner
            self.num_hidden_layers = num_hidden_layers
            self.bi_data = bi_data
            self.untie_r = untie_r
            self.same_length = same_length
            self.initializer_range = initializer_range
            self.seed = seed
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
109
110
111
            self.bos_token_id = bos_token_id
            self.pad_token_id = pad_token_id
            self.eos_token_id = eos_token_id
thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
118
119
120
121
122
123

        def prepare_config_and_inputs(self):
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

            input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
            perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
            perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
            perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
            # perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
thomwolf's avatar
thomwolf committed
124
125
            target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
            target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
thomwolf's avatar
thomwolf committed
126
127
128
129
130
131
132
133
134
135
136
137
            target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
            # target_mapping[:, 0, -1] = 1.0  # predict last token

            sequence_labels = None
            lm_labels = None
            is_impossible_labels = None
            if self.use_labels:
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

            config = XLNetConfig(
thomwolf's avatar
thomwolf committed
138
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144
145
146
147
148
149
                d_model=self.hidden_size,
                n_head=self.num_attention_heads,
                d_inner=self.d_inner,
                n_layer=self.num_hidden_layers,
                untie_r=self.untie_r,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                same_length=self.same_length,
                reuse_len=self.reuse_len,
                bi_data=self.bi_data,
                initializer_range=self.initializer_range,
150
                num_labels=self.type_sequence_label_size,
151
152
153
                bos_token_id=self.bos_token_id,
                pad_token_id=self.pad_token_id,
                eos_token_id=self.eos_token_id,
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            )

            return (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
            )
thomwolf's avatar
thomwolf committed
169
170
171
172
173

        def set_seed(self):
            random.seed(self.seed)
            tf.random.set_seed(self.seed)

174
175
176
177
178
179
180
181
182
183
184
185
186
187
        def create_and_check_xlnet_base_model(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
thomwolf's avatar
thomwolf committed
188
189
            model = TFXLNetModel(config)

190
            inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
thomwolf's avatar
thomwolf committed
191
192
193

            _, _ = model(inputs)

thomwolf's avatar
thomwolf committed
194
            inputs = [input_ids_1, input_mask]
thomwolf's avatar
thomwolf committed
195
196
197
198

            outputs, mems_1 = model(inputs)

            result = {
thomwolf's avatar
thomwolf committed
199
                "mems_1": [mem.numpy() for mem in mems_1],
thomwolf's avatar
thomwolf committed
200
201
202
                "outputs": outputs.numpy(),
            }

thomwolf's avatar
thomwolf committed
203
204
            config.mem_len = 0
            model = TFXLNetModel(config)
205
206
207
            no_mems_outputs = model(inputs)
            self.parent.assertEqual(len(no_mems_outputs), 1)

thomwolf's avatar
thomwolf committed
208
            self.parent.assertListEqual(
209
210
                list(result["outputs"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
211
212
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_lm_head(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
230
231
            model = TFXLNetLMHeadModel(config)

232
            inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
233
234
235

            all_logits_1, mems_1 = model(inputs_1)

236
            inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
237
238
239

            all_logits_2, mems_2 = model(inputs_2)

240
            inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
241
242
243
244
245
246
247
248
249
250
251

            logits, _ = model(inputs_3)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "all_logits_1": all_logits_1.numpy(),
                "mems_2": [mem.numpy() for mem in mems_2],
                "all_logits_2": all_logits_2.numpy(),
            }

            self.parent.assertListEqual(
252
253
                list(result["all_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
254
255
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
256
257
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
258
259

            self.parent.assertListEqual(
260
261
                list(result["all_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
262
263
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_2"]),
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_qa(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
281
282
            model = TFXLNetForQuestionAnsweringSimple(config)

283
            inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
284
285
286
287
288
289
290
291
            start_logits, end_logits, mems = model(inputs)

            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
                "mems": [m.numpy() for m in mems],
            }

292
293
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
294
295
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems"]),
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_sequence_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
313
314
315
316
317
318
319
320
321
            model = TFXLNetForSequenceClassification(config)

            logits, mems_1 = model(input_ids_1)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "logits": logits.numpy(),
            }

322
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
323
324
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_for_token_classification(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
342
343
            config.num_labels = input_ids_1.shape[1]
            model = TFXLNetForTokenClassification(config)
344
345
346
347
348
            inputs = {
                "input_ids": input_ids_1,
                "attention_mask": input_mask,
                # 'token_type_ids': token_type_ids
            }
349
350
351
352
353
354
            logits, mems_1 = model(inputs)
            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
355
356
                list(result["logits"].shape), [self.batch_size, self.seq_length, config.num_labels]
            )
357
358
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
359
360
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
361

thomwolf's avatar
thomwolf committed
362
363
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFXLNetModelTest.TFXLNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
395
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

402
403
404
405
    def test_xlnet_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_for_token_classification(*config_and_inputs)

thomwolf's avatar
thomwolf committed
406
407
408
409
410
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)

411
    @slow
thomwolf's avatar
thomwolf committed
412
413
    def test_model_from_pretrained(self):
        for model_name in list(TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
414
            model = TFXLNetModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
415
            self.assertIsNotNone(model)