test_modeling_tf_roberta.py 10.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17
18

import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
20
from transformers import RobertaConfig, is_tf_available

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
thomwolf's avatar
thomwolf committed
24
25
26
27
28


if is_tf_available():
    import tensorflow as tf
    import numpy
29
30
31
32
33
34
35
    from transformers.modeling_tf_roberta import (
        TFRobertaModel,
        TFRobertaForMaskedLM,
        TFRobertaForSequenceClassification,
        TFRobertaForTokenClassification,
        TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
thomwolf's avatar
thomwolf committed
36
37


38
@require_tf
39
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
40

41
42
43
    all_model_classes = (
        (TFRobertaModel, TFRobertaForMaskedLM, TFRobertaForSequenceClassification) if is_tf_available() else ()
    )
thomwolf's avatar
thomwolf committed
44
45

    class TFRobertaModelTester(object):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = RobertaConfig(
thomwolf's avatar
thomwolf committed
114
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
122
123
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
124
125
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
126
127
128

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

129
130
131
        def create_and_check_roberta_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
132
            model = TFRobertaModel(config=config)
133
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
134
135
136
137
138
139
140
141
142
143
144
            sequence_output = model(inputs)[0]

            inputs = [input_ids, input_mask]
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
145
146
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
147

148
149
150
        def create_and_check_roberta_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
            model = TFRobertaForMaskedLM(config=config)
            prediction_scores = model([input_ids, input_mask, token_type_ids])[0]
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
157
158
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
159

160
161
162
        def create_and_check_roberta_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Matt Maybeno's avatar
Matt Maybeno committed
163
164
            config.num_labels = self.num_labels
            model = TFRobertaForTokenClassification(config=config)
165
166
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
Matt Maybeno's avatar
Matt Maybeno committed
167
168
169
170
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
171
172
                list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
            )
Matt Maybeno's avatar
Matt Maybeno committed
173

thomwolf's avatar
thomwolf committed
174
175
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
176
177
178
179
180
181
182
183
184
185
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFRobertaModelTest.TFRobertaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_roberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)

Lysandre's avatar
Lysandre committed
203
204
205
206
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_token_classification(*config_and_inputs)

207
    @slow
thomwolf's avatar
thomwolf committed
208
209
    def test_model_from_pretrained(self):
        for model_name in list(TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
210
            model = TFRobertaModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
211
212
213
214
            self.assertIsNotNone(model)


class TFRobertaModelIntegrationTest(unittest.TestCase):
215
    @slow
thomwolf's avatar
thomwolf committed
216
    def test_inference_masked_lm(self):
217
        model = TFRobertaForMaskedLM.from_pretrained("roberta-base")
218

219
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
220
221
        output = model(input_ids)[0]
        expected_shape = [1, 11, 50265]
222
        self.assertEqual(list(output.numpy().shape), expected_shape)
thomwolf's avatar
thomwolf committed
223
224
        # compare the actual values for a slice.
        expected_slice = tf.constant(
225
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
thomwolf's avatar
thomwolf committed
226
        )
227
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
228

229
    @slow
thomwolf's avatar
thomwolf committed
230
    def test_inference_no_head(self):
231
        model = TFRobertaModel.from_pretrained("roberta-base")
232

233
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
234
235
236
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = tf.constant(
237
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
thomwolf's avatar
thomwolf committed
238
        )
239
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
240

241
    @slow
thomwolf's avatar
thomwolf committed
242
    def test_inference_classification_head(self):
243
        model = TFRobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
244

245
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
246
247
        output = model(input_ids)[0]
        expected_shape = [1, 3]
248
249
        self.assertEqual(list(output.numpy().shape), expected_shape)
        expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]])
250
        self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4))