configuration_bertabs.py 3.27 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8
# Copyright 2019 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BertAbs configuration """
import logging

from transformers import PretrainedConfig


logger = logging.getLogger(__name__)


BERTABS_FINETUNED_CONFIG_MAP = {
    "bertabs-finetuned-cnndm": "https://s3.amazonaws.com/models.huggingface.co/bert/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization-config.json",
}


class BertAbsConfig(PretrainedConfig):
    r""" Class to store the configuration of the BertAbs model.

    Arguments:
thomwolf's avatar
thomwolf committed
34
35
        vocab_size: int
            Number of tokens in the vocabulary.
Rémi Louf's avatar
Rémi Louf committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        max_pos: int
            The maximum sequence length that this model will be used with.
        enc_layer: int
            The numner of hidden layers in the Transformer encoder.
        enc_hidden_size: int
            The size of the encoder's layers.
        enc_heads: int
            The number of attention heads for each attention layer in the encoder.
        enc_ff_size: int
            The size of the encoder's feed-forward layers.
        enc_dropout: int
            The dropout probabilitiy for all fully connected layers in the
            embeddings, layers, pooler and also the attention probabilities in
            the encoder.
        dec_layer: int
            The numner of hidden layers in the decoder.
        dec_hidden_size: int
            The size of the decoder's layers.
        dec_heads: int
            The number of attention heads for each attention layer in the decoder.
        dec_ff_size: int
            The size of the decoder's feed-forward layers.
        dec_dropout: int
            The dropout probabilitiy for all fully connected layers in the
            embeddings, layers, pooler and also the attention probabilities in
            the decoder.
    """

    pretrained_config_archive_map = BERTABS_FINETUNED_CONFIG_MAP
Julien Chaumond's avatar
Julien Chaumond committed
65
    model_type = "bertabs"
Rémi Louf's avatar
Rémi Louf committed
66
67
68

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
69
        vocab_size=30522,
Rémi Louf's avatar
Rémi Louf committed
70
71
72
73
74
75
76
77
78
79
80
81
82
        max_pos=512,
        enc_layers=6,
        enc_hidden_size=512,
        enc_heads=8,
        enc_ff_size=512,
        enc_dropout=0.2,
        dec_layers=6,
        dec_hidden_size=768,
        dec_heads=8,
        dec_ff_size=2048,
        dec_dropout=0.2,
        **kwargs,
    ):
Julien Chaumond's avatar
Julien Chaumond committed
83
        super().__init__(**kwargs)
Rémi Louf's avatar
Rémi Louf committed
84

thomwolf's avatar
thomwolf committed
85
86
        self.vocab_size = vocab_size
        self.max_pos = max_pos
Rémi Louf's avatar
Rémi Louf committed
87

thomwolf's avatar
thomwolf committed
88
89
90
91
92
        self.enc_layers = enc_layers
        self.enc_hidden_size = enc_hidden_size
        self.enc_heads = enc_heads
        self.enc_ff_size = enc_ff_size
        self.enc_dropout = enc_dropout
Rémi Louf's avatar
Rémi Louf committed
93

thomwolf's avatar
thomwolf committed
94
95
96
97
98
        self.dec_layers = dec_layers
        self.dec_hidden_size = dec_hidden_size
        self.dec_heads = dec_heads
        self.dec_ff_size = dec_ff_size
        self.dec_dropout = dec_dropout