test_feature_extraction_wav2vec2.py 8.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import itertools
import random
import unittest

import numpy as np

from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, Wav2Vec2Config, Wav2Vec2FeatureExtractor
24
from transformers.testing_utils import require_torch, slow
25

26
from .test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


global_rng = random.Random()


def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


class Wav2Vec2FeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        min_seq_length=400,
        max_seq_length=2000,
        feature_size=1,
        padding_value=0.0,
        sampling_rate=16000,
        return_attention_mask=True,
        do_normalize=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.min_seq_length = min_seq_length
        self.max_seq_length = max_seq_length
        self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
        self.feature_size = feature_size
        self.padding_value = padding_value
        self.sampling_rate = sampling_rate
        self.return_attention_mask = return_attention_mask
        self.do_normalize = do_normalize

    def prepare_feat_extract_dict(self):
        return {
            "feature_size": self.feature_size,
            "padding_value": self.padding_value,
            "sampling_rate": self.sampling_rate,
            "return_attention_mask": self.return_attention_mask,
            "do_normalize": self.do_normalize,
        }

    def prepare_inputs_for_common(self, equal_length=False, numpify=False):
        def _flatten(list_of_lists):
            return list(itertools.chain(*list_of_lists))

        if equal_length:
            speech_inputs = floats_list((self.batch_size, self.max_seq_length))
        else:
86
            # make sure that inputs increase in size
87
88
89
90
91
92
93
94
95
96
97
            speech_inputs = [
                _flatten(floats_list((x, self.feature_size)))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]

        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]

        return speech_inputs


98
class Wav2Vec2FeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
99
100
101
102
103
104

    feature_extraction_class = Wav2Vec2FeatureExtractor

    def setUp(self):
        self.feat_extract_tester = Wav2Vec2FeatureExtractionTester(self)

105
106
107
108
    def _check_zero_mean_unit_variance(self, input_vector):
        self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3))
        self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3))

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 800, 1000, and 1200
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test not batched input
        encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values
        encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values
        encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

127
    def test_zero_mean_unit_variance_normalization_np(self):
128
129
130
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

131
132
133
134
135
136
        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 1600, None]
        for max_length, padding in zip(max_lengths, paddings):
            processed = feat_extract(speech_inputs, padding=padding, max_length=max_length, return_tensors="np")
            input_values = processed.input_values

137
            self._check_zero_mean_unit_variance(input_values[0][:800])
138
            self.assertTrue(input_values[0][800:].sum() < 1e-6)
139
            self._check_zero_mean_unit_variance(input_values[1][:1000])
140
            self.assertTrue(input_values[0][1000:].sum() < 1e-6)
141
            self._check_zero_mean_unit_variance(input_values[2][:1200])
142
143
144
145
146
147
148
149
150
151
152
153
154

    def test_zero_mean_unit_variance_normalization(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        lengths = range(800, 1400, 200)
        speech_inputs = [floats_list((1, x))[0] for x in lengths]

        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 1600, None]

        for max_length, padding in zip(max_lengths, paddings):
            processed = feat_extract(speech_inputs, max_length=max_length, padding=padding)
            input_values = processed.input_values

155
156
157
            self._check_zero_mean_unit_variance(input_values[0][:800])
            self._check_zero_mean_unit_variance(input_values[1][:1000])
            self._check_zero_mean_unit_variance(input_values[2][:1200])
158

159
    def test_zero_mean_unit_variance_normalization_trunc_np_max_length(self):
160
161
162
163
164
165
166
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=1000, padding="max_length", return_tensors="np"
        )
        input_values = processed.input_values

167
168
169
        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1])
        self._check_zero_mean_unit_variance(input_values[2])
170

171
172
173
174
175
176
177
178
    def test_zero_mean_unit_variance_normalization_trunc_np_longest(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=1000, padding="longest", return_tensors="np"
        )
        input_values = processed.input_values

179
180
181
        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1, :1000])
        self._check_zero_mean_unit_variance(input_values[2])
182
183
184
185
186
187
188
189
190
191

        # make sure that if max_length < longest -> then pad to max_length
        self.assertTrue(input_values.shape == (3, 1000))

        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=2000, padding="longest", return_tensors="np"
        )
        input_values = processed.input_values

192
193
194
        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1, :1000])
        self._check_zero_mean_unit_variance(input_values[2])
195
196
197
198

        # make sure that if max_length > longest -> then pad to longest
        self.assertTrue(input_values.shape == (3, 1200))

199
    @slow
200
    @require_torch
201
202
203
204
205
206
207
208
209
210
211
    def test_pretrained_checkpoints_are_set_correctly(self):
        # this test makes sure that models that are using
        # group norm don't have their feature extractor return the
        # attention_mask
        for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
            config = Wav2Vec2Config.from_pretrained(model_id)
            feat_extract = Wav2Vec2FeatureExtractor.from_pretrained(model_id)

            # only "layer" feature extraction norm should make use of
            # attention_mask
            self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == "layer")