"examples/mm-imdb/run_mmimdb.py" did not exist on "73fe2e7385af4c6062f366825af570d44cd22fd8"
test_tokenization_marian.py 2.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
18
import tempfile
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import unittest
from pathlib import Path
from shutil import copyfile

from transformers.tokenization_marian import MarianTokenizer, save_json, vocab_files_names
from transformers.tokenization_utils import BatchEncoding

from .test_tokenization_common import TokenizerTesterMixin


SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")

mock_tokenizer_config = {"target_lang": "fi", "source_lang": "en"}
zh_code = ">>zh<<"
ORG_NAME = "Helsinki-NLP/"


class MarianTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = MarianTokenizer

    def setUp(self):
        super().setUp()
        vocab = ["</s>", "<unk>", "鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est", "\u0120", "<pad>"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        save_dir = Path(self.tmpdirname)
        save_json(vocab_tokens, save_dir / vocab_files_names["vocab"])
        save_json(mock_tokenizer_config, save_dir / vocab_files_names["tokenizer_config_file"])
        if not (save_dir / vocab_files_names["source_spm"]).exists():
            copyfile(SAMPLE_SP, save_dir / vocab_files_names["source_spm"])
            copyfile(SAMPLE_SP, save_dir / vocab_files_names["target_spm"])

        tokenizer = MarianTokenizer.from_pretrained(self.tmpdirname)
        tokenizer.save_pretrained(self.tmpdirname)

54
55
    def get_tokenizer(self, **kwargs) -> MarianTokenizer:
        return MarianTokenizer.from_pretrained(self.tmpdirname, **kwargs)
56

57
    def get_input_output_texts(self, tokenizer):
58
59
60
61
62
63
64
65
66
67
68
        return (
            "This is a test",
            "This is a test",
        )

    def test_tokenizer_equivalence_en_de(self):
        en_de_tokenizer = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de")
        batch = en_de_tokenizer.prepare_translation_batch(["I am a small frog"], return_tensors=None)
        self.assertIsInstance(batch, BatchEncoding)
        expected = [38, 121, 14, 697, 38848, 0]
        self.assertListEqual(expected, batch.input_ids[0])
69
70
71
72
73
74

        save_dir = tempfile.mkdtemp()
        en_de_tokenizer.save_pretrained(save_dir)
        contents = [x.name for x in Path(save_dir).glob("*")]
        self.assertIn("source.spm", contents)
        MarianTokenizer.from_pretrained(save_dir)