test_optimization.py 6.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20

21
from transformers import is_torch_available
22
from transformers.testing_utils import require_torch
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24


25
if is_torch_available():
thomwolf's avatar
thomwolf committed
26
27
    import torch

28
29
30
31
32
33
34
35
    from transformers import (
        AdamW,
        get_constant_schedule,
        get_constant_schedule_with_warmup,
        get_cosine_schedule_with_warmup,
        get_cosine_with_hard_restarts_schedule_with_warmup,
        get_linear_schedule_with_warmup,
    )
thomwolf's avatar
thomwolf committed
36

lukovnikov's avatar
lukovnikov committed
37

thomwolf's avatar
thomwolf committed
38
39
40
41
42
43
44
def unwrap_schedule(scheduler, num_steps=10):
    lrs = []
    for _ in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
    return lrs

45

46
47
48
49
50
51
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
    lrs = []
    for step in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
        if step == num_steps // 2:
52
            with tempfile.TemporaryDirectory() as tmpdirname:
53
                file_name = os.path.join(tmpdirname, "schedule.bin")
54
55
56
57
58
59
                torch.save(scheduler.state_dict(), file_name)

                state_dict = torch.load(file_name)
                scheduler.load_state_dict(state_dict)
    return lrs

60

61
@require_torch
62
63
64
65
66
67
class OptimizationTest(unittest.TestCase):
    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
68
    def test_adam_w(self):
69
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
70
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
71
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
72
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
73
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
74
        for _ in range(100):
thomwolf's avatar
thomwolf committed
75
            loss = criterion(w, target)
76
77
            loss.backward()
            optimizer.step()
78
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
thomwolf's avatar
thomwolf committed
79
            w.grad.zero_()
80
81
82
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)


83
@require_torch
lukovnikov's avatar
lukovnikov committed
84
class ScheduleInitTest(unittest.TestCase):
thomwolf's avatar
thomwolf committed
85
    m = torch.nn.Linear(50, 50) if is_torch_available() else None
86
    optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
93
94
    num_steps = 10

    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

    def test_constant_scheduler(self):
95
        scheduler = get_constant_schedule(self.optimizer)
thomwolf's avatar
thomwolf committed
96
        lrs = unwrap_schedule(scheduler, self.num_steps)
97
        expected_learning_rates = [10.0] * self.num_steps
thomwolf's avatar
thomwolf committed
98
99
100
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

101
        scheduler = get_constant_schedule(self.optimizer)
102
103
104
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
105
    def test_warmup_constant_scheduler(self):
106
        scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
thomwolf's avatar
thomwolf committed
107
108
109
110
111
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

112
        scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
113
114
115
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
116
    def test_warmup_linear_scheduler(self):
117
        scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
thomwolf's avatar
thomwolf committed
118
119
120
121
122
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

123
        scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
124
125
126
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
127
    def test_warmup_cosine_scheduler(self):
128
        scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
thomwolf's avatar
thomwolf committed
129
130
131
132
133
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)

134
        scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
135
136
137
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
138
    def test_warmup_cosine_hard_restart_scheduler(self):
139
140
141
        scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
            self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10
        )
thomwolf's avatar
thomwolf committed
142
143
144
145
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
lukovnikov's avatar
lukovnikov committed
146

147
148
149
        scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
            self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10
        )
150
151
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])