test_onnx.py 5.72 KB
Newer Older
1
2
3
import unittest
from os.path import dirname, exists
from shutil import rmtree
4
from tempfile import NamedTemporaryFile, TemporaryDirectory
5
6
7

from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import convert, ensure_valid_input, infer_shapes
8
from transformers.testing_utils import require_tf, require_torch, slow
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


class FuncContiguousArgs:
    def forward(self, input_ids, token_type_ids, attention_mask):
        return None


class FuncNonContiguousArgs:
    def forward(self, input_ids, some_other_args, token_type_ids, attention_mask):
        return None


class OnnxExportTestCase(unittest.TestCase):
    MODEL_TO_TEST = ["bert-base-cased", "gpt2", "roberta-base"]

    @require_tf
25
    @slow
26
27
28
29
30
    def test_export_tensorflow(self):
        for model in OnnxExportTestCase.MODEL_TO_TEST:
            self._test_export(model, "tf", 11)

    @require_torch
31
    @slow
32
33
34
35
    def test_export_pytorch(self):
        for model in OnnxExportTestCase.MODEL_TO_TEST:
            self._test_export(model, "pt", 11)

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    @require_torch
    @slow
    def test_export_custom_bert_model(self):
        from transformers import BertModel

        vocab = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
        with NamedTemporaryFile(mode="w+t") as vocab_file:
            vocab_file.write("\n".join(vocab))
            vocab_file.flush()
            tokenizer = BertTokenizerFast(vocab_file.name)

        with TemporaryDirectory() as bert_save_dir:
            model = BertModel(BertConfig(vocab_size=len(vocab)))
            model.save_pretrained(bert_save_dir)
            self._test_export(bert_save_dir, "pt", 11, tokenizer)

    def _test_export(self, model, framework, opset, tokenizer=None):
53
54
        try:
            # Compute path
55
56
            with TemporaryDirectory() as tempdir:
                path = tempdir + "/model.onnx"
57
58
59
60
61

            # Remove folder if exists
            if exists(dirname(path)):
                rmtree(dirname(path))

62
63
                # Export
                convert(framework, model, path, opset, tokenizer)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        except Exception as e:
            self.fail(e)

    @require_torch
    def test_infer_dynamic_axis_pytorch(self):
        """
        Validate the dynamic axis generated for each parameters are correct
        """
        from transformers import BertModel

        model = BertModel(BertConfig.from_pretrained("bert-base-cased"))
        tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
        self._test_infer_dynamic_axis(model, tokenizer, "pt")

    @require_tf
    def test_infer_dynamic_axis_tf(self):
        """
        Validate the dynamic axis generated for each parameters are correct
        """
        from transformers import TFBertModel

        model = TFBertModel(BertConfig.from_pretrained("bert-base-cased"))
        tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
        self._test_infer_dynamic_axis(model, tokenizer, "tf")

    def _test_infer_dynamic_axis(self, model, tokenizer, framework):
        nlp = FeatureExtractionPipeline(model, tokenizer)

        variable_names = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
        input_vars, output_vars, shapes, tokens = infer_shapes(nlp, framework)

        # Assert all variables are present
        self.assertEqual(len(shapes), len(variable_names))
        self.assertTrue(all([var_name in shapes for var_name in variable_names]))
        self.assertSequenceEqual(variable_names[:3], input_vars)
        self.assertSequenceEqual(variable_names[3:], output_vars)

        # Assert inputs are {0: batch, 1: sequence}
        for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
            self.assertDictEqual(shapes[var_name], {0: "batch", 1: "sequence"})

        # Assert outputs are {0: batch, 1: sequence} and {0: batch}
        self.assertDictEqual(shapes["output_0"], {0: "batch", 1: "sequence"})
        self.assertDictEqual(shapes["output_1"], {0: "batch"})

    def test_ensure_valid_input(self):
        """
        Validate parameters are correctly exported
        GPT2 has "past" parameter in the middle of input_ids, token_type_ids and attention_mask.
        ONNX doesn't support export with a dictionary, only a tuple. Thus we need to ensure we remove
        token_type_ids and attention_mask for now to not having a None tensor in the middle
        """
        # All generated args are valid
        input_names = ["input_ids", "attention_mask", "token_type_ids"]
        tokens = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
119
        ordered_input_names, inputs_args = ensure_valid_input(FuncContiguousArgs(), tokens, input_names)
120
121
122
123

        # Should have exactly the same number of args (all are valid)
        self.assertEqual(len(inputs_args), 3)

124
125
126
        # Should have exactly the same input names
        self.assertEqual(set(ordered_input_names), set(input_names))

127
128
129
130
131
        # Parameter should be reordered according to their respective place in the function:
        # (input_ids, token_type_ids, attention_mask)
        self.assertEqual(inputs_args, (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]))

        # Generated args are interleaved with another args (for instance parameter "past" in GPT2)
132
        ordered_input_names, inputs_args = ensure_valid_input(FuncNonContiguousArgs(), tokens, input_names)
133
134
135

        # Should have exactly the one arg (all before the one not provided "some_other_args")
        self.assertEqual(len(inputs_args), 1)
136
        self.assertEqual(len(ordered_input_names), 1)
137
138
139

        # Should have only "input_ids"
        self.assertEqual(inputs_args[0], tokens["input_ids"])
140
        self.assertEqual(ordered_input_names[0], "input_ids")