"...lm-evaluation-harness.git" did not exist on "e9d429e105fa95dd4a1b5606b306289d207fcf62"
test_modeling_roberta.py 14.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import unittest
18

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
thomwolf's avatar
thomwolf committed
27
    import torch
28
29
30
31
    from transformers import (
        RobertaConfig,
        RobertaModel,
        RobertaForMaskedLM,
32
33
        RobertaForMultipleChoice,
        RobertaForQuestionAnswering,
34
35
36
        RobertaForSequenceClassification,
        RobertaForTokenClassification,
    )
37
    from transformers.modeling_roberta import RobertaEmbeddings, create_position_ids_from_input_ids
38
    from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
39
40


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
class RobertaModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = RobertaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_roberta_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaModel(config=config)
        model.to(torch_device)
        model.eval()
        sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

    def create_and_check_roberta_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.check_loss_output(result)

    def create_and_check_roberta_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = RobertaForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
        self.check_loss_output(result)

    def create_and_check_roberta_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = RobertaForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        loss, logits = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
        self.check_loss_output(result)

    def create_and_check_roberta_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        loss, start_logits, end_logits = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
        result = {
            "loss": loss,
            "start_logits": start_logits,
            "end_logits": end_logits,
        }
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


218
@require_torch
219
class RobertaModelTest(ModelTesterMixin, unittest.TestCase):
220

221
222
223
224
225
226
227
228
229
230
231
232
    all_model_classes = (
        (
            RobertaForMaskedLM,
            RobertaModel,
            RobertaForSequenceClassification,
            RobertaForTokenClassification,
            RobertaForMultipleChoice,
            RobertaForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
233
234

    def setUp(self):
235
        self.model_tester = RobertaModelTester(self)
236
237
238
239
240
241
242
243
244
245
246
247
248
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_roberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)

Lysandre's avatar
Lysandre committed
249
250
251
252
253
254
255
256
257
258
259
260
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_token_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_multiple_choice(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_question_answering(*config_and_inputs)

261
    @slow
262
    def test_model_from_pretrained(self):
263
        for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
264
            model = RobertaModel.from_pretrained(model_name)
265
266
            self.assertIsNotNone(model)

Dom Hudson's avatar
Dom Hudson committed
267
268
269
270
271
272
273
274
275
276
277
    def test_create_position_ids_respects_padding_index(self):
        """ Ensure that the default position ids only assign a sequential . This is a regression
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = RobertaEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
278
279
280
        expected_positions = torch.as_tensor(
            [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
        )
Dom Hudson's avatar
Dom Hudson committed
281

Sam Shleifer's avatar
Sam Shleifer committed
282
        position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
283
        self.assertEqual(position_ids.shape, expected_positions.shape)
Dom Hudson's avatar
Dom Hudson committed
284
285
286
287
288
289
290
291
292
293
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
        """ Ensure that the default position ids only assign a sequential . This is a regression
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
294
295
296
297
298
299
300
301
302
303
304
        embeddings = RobertaEmbeddings(config=config)

        inputs_embeds = torch.Tensor(2, 4, 30)
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
305
306
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
307
308
309


class RobertaModelIntegrationTest(unittest.TestCase):
310
    @slow
311
    def test_inference_masked_lm(self):
312
        model = RobertaForMaskedLM.from_pretrained("roberta-base")
313

314
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
315
316
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 50265))
317
        self.assertEqual(output.shape, expected_shape)
318
        # compare the actual values for a slice.
319
320
        expected_slice = torch.tensor(
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
321
        )
322
323
324
325
326
327

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
328

329
    @slow
330
    def test_inference_no_head(self):
331
        model = RobertaModel.from_pretrained("roberta-base")
332

333
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
334
335
        output = model(input_ids)[0]
        # compare the actual values for a slice.
336
337
        expected_slice = torch.tensor(
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
338
        )
339
340
341
342
343
344

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
345

346
    @slow
347
    def test_inference_classification_head(self):
348
        model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
349

350
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
351
352
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 3))
353
        self.assertEqual(output.shape, expected_shape)
354
355
356
357
358
359
360
        expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
        # roberta.eval()
        # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()

        self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))