test_benchmark_tf.py 7.14 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
import os
import tempfile
import unittest
from pathlib import Path

from transformers import AutoConfig, is_tf_available
7
from transformers.testing_utils import require_tf
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
11


if is_tf_available():
    import tensorflow as tf
12
    from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
Patrick von Platen's avatar
Patrick von Platen committed
13
14
15
16
17
18
19
20
21
22
23
24


@require_tf
class TFBenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
25
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
26
27
28
29
30
31
32
33
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
            no_multi_process=True,
        )
34
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
38
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

39
40
    def test_inference_no_configs_only_pretrain(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"
41
        benchmark_args = TensorFlowBenchmarkArguments(
42
43
44
45
46
47
48
49
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
            only_pretrain_model=True,
        )
50
        benchmark = TensorFlowBenchmark(benchmark_args)
51
52
53
54
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

Patrick von Platen's avatar
Patrick von Platen committed
55
56
    def test_inference_no_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
57
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
62
63
64
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
65
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
70
71
72
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
73
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
77
78
79
80
81
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
            no_multi_process=True,
        )
82
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
87
88
89
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
90
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
91
92
93
94
95
96
97
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
98
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
103
104
105
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "patrickvonplaten/t5-tiny-random"
        config = AutoConfig.from_pretrained(MODEL_ID)
106
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
107
108
109
110
111
112
113
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
114
        benchmark = TensorFlowBenchmark(benchmark_args, configs=[config])
Patrick von Platen's avatar
Patrick von Platen committed
115
116
117
118
119
120
121
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.")
    def test_inference_no_configs_xla(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
122
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
127
128
129
130
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            use_xla=True,
            no_multi_process=True,
        )
131
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
139
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
143
144
145
146
147
148
149
                models=[MODEL_ID],
                no_inference=False,
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
                no_multi_process=True,
            )
150
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
166
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
175
176
                models=[MODEL_ID],
                no_inference=False,
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
                eager_mode=True,
                no_multi_process=True,
            )
177
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())