test_modeling_deta.py 27.5 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DETA model. """


18
import collections
NielsRogge's avatar
NielsRogge committed
19
20
import inspect
import math
21
import re
NielsRogge's avatar
NielsRogge committed
22
23
import unittest

24
from transformers import DetaConfig, ResNetConfig, is_torch_available, is_torchvision_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
31
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
32
33
34
35
36


if is_torch_available():
    import torch

37
38
    from transformers.pytorch_utils import id_tensor_storage

NielsRogge's avatar
NielsRogge committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
if is_torchvision_available():
    from transformers import DetaForObjectDetection, DetaModel


if is_vision_available():
    from PIL import Image

    from transformers import AutoImageProcessor


class DetaModelTester:
    def __init__(
        self,
        parent,
        batch_size=8,
        is_training=True,
        use_labels=True,
56
        hidden_size=32,
NielsRogge's avatar
NielsRogge committed
57
58
59
60
61
62
63
        num_hidden_layers=2,
        num_attention_heads=8,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        num_queries=12,
64
        two_stage_num_proposals=12,
NielsRogge's avatar
NielsRogge committed
65
        num_channels=3,
66
        image_size=224,
NielsRogge's avatar
NielsRogge committed
67
68
69
70
71
        n_targets=8,
        num_labels=91,
        num_feature_levels=4,
        encoder_n_points=2,
        decoder_n_points=6,
72
73
74
        two_stage=True,
        assign_first_stage=True,
        assign_second_stage=True,
NielsRogge's avatar
NielsRogge committed
75
76
77
78
79
80
81
82
83
84
85
86
87
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.num_queries = num_queries
88
        self.two_stage_num_proposals = two_stage_num_proposals
NielsRogge's avatar
NielsRogge committed
89
90
91
92
93
94
95
96
        self.num_channels = num_channels
        self.image_size = image_size
        self.n_targets = n_targets
        self.num_labels = num_labels
        self.num_feature_levels = num_feature_levels
        self.encoder_n_points = encoder_n_points
        self.decoder_n_points = decoder_n_points
        self.two_stage = two_stage
97
98
        self.assign_first_stage = assign_first_stage
        self.assign_second_stage = assign_second_stage
NielsRogge's avatar
NielsRogge committed
99
100
101
102
103
104
105
106
107
108

        # we also set the expected seq length for both encoder and decoder
        self.encoder_seq_length = (
            math.ceil(self.image_size / 8) ** 2
            + math.ceil(self.image_size / 16) ** 2
            + math.ceil(self.image_size / 32) ** 2
            + math.ceil(self.image_size / 64) ** 2
        )
        self.decoder_seq_length = self.num_queries

109
    def prepare_config_and_inputs(self, model_class_name):
NielsRogge's avatar
NielsRogge committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device)

        labels = None
        if self.use_labels:
            # labels is a list of Dict (each Dict being the labels for a given example in the batch)
            labels = []
            for i in range(self.batch_size):
                target = {}
                target["class_labels"] = torch.randint(
                    high=self.num_labels, size=(self.n_targets,), device=torch_device
                )
                target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
                target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device)
                labels.append(target)

127
        config = self.get_config(model_class_name)
NielsRogge's avatar
NielsRogge committed
128
129
        return config, pixel_values, pixel_mask, labels

130
    def get_config(self, model_class_name):
131
132
133
134
135
136
137
138
139
140
        resnet_config = ResNetConfig(
            num_channels=3,
            embeddings_size=10,
            hidden_sizes=[10, 20, 30, 40],
            depths=[1, 1, 2, 1],
            hidden_act="relu",
            num_labels=3,
            out_features=["stage2", "stage3", "stage4"],
            out_indices=[2, 3, 4],
        )
141
142
143
        two_stage = model_class_name == "DetaForObjectDetection"
        assign_first_stage = model_class_name == "DetaForObjectDetection"
        assign_second_stage = model_class_name == "DetaForObjectDetection"
NielsRogge's avatar
NielsRogge committed
144
145
146
147
148
149
150
151
152
153
154
        return DetaConfig(
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            num_queries=self.num_queries,
155
            two_stage_num_proposals=self.two_stage_num_proposals,
NielsRogge's avatar
NielsRogge committed
156
157
158
159
            num_labels=self.num_labels,
            num_feature_levels=self.num_feature_levels,
            encoder_n_points=self.encoder_n_points,
            decoder_n_points=self.decoder_n_points,
160
161
162
            two_stage=two_stage,
            assign_first_stage=assign_first_stage,
            assign_second_stage=assign_second_stage,
163
            backbone_config=resnet_config,
164
            backbone=None,
NielsRogge's avatar
NielsRogge committed
165
166
        )

167
168
    def prepare_config_and_inputs_for_common(self, model_class_name="DetaModel"):
        config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs(model_class_name)
NielsRogge's avatar
NielsRogge committed
169
170
171
172
173
174
175
176
177
178
179
180
181
        inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
        return config, inputs_dict

    def create_and_check_deta_model(self, config, pixel_values, pixel_mask, labels):
        model = DetaModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
        result = model(pixel_values)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size))

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def create_and_check_deta_freeze_backbone(self, config, pixel_values, pixel_mask, labels):
        model = DetaModel(config=config)
        model.to(torch_device)
        model.eval()

        model.freeze_backbone()

        for _, param in model.backbone.model.named_parameters():
            self.parent.assertEqual(False, param.requires_grad)

    def create_and_check_deta_unfreeze_backbone(self, config, pixel_values, pixel_mask, labels):
        model = DetaModel(config=config)
        model.to(torch_device)
        model.eval()

        model.unfreeze_backbone()

        for _, param in model.backbone.model.named_parameters():
            self.parent.assertEqual(True, param.requires_grad)

NielsRogge's avatar
NielsRogge committed
202
203
204
205
206
207
208
209
    def create_and_check_deta_object_detection_head_model(self, config, pixel_values, pixel_mask, labels):
        model = DetaForObjectDetection(config=config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
        result = model(pixel_values)

210
211
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.two_stage_num_proposals, self.num_labels))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.two_stage_num_proposals, 4))
NielsRogge's avatar
NielsRogge committed
212
213
214
215

        result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels)

        self.parent.assertEqual(result.loss.shape, ())
216
217
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.two_stage_num_proposals, self.num_labels))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.two_stage_num_proposals, 4))
NielsRogge's avatar
NielsRogge committed
218
219
220


@require_torchvision
221
class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
222
    all_model_classes = (DetaModel, DetaForObjectDetection) if is_torchvision_available() else ()
223
    pipeline_model_mapping = (
224
        {"image-feature-extraction": DetaModel, "object-detection": DetaForObjectDetection}
225
226
227
        if is_torchvision_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
228
229
230
231
232
233
    is_encoder_decoder = True
    test_torchscript = False
    test_pruning = False
    test_head_masking = False
    test_missing_keys = False

234
235
236
237
238
239
240
241
242
    # TODO: Fix the failed tests when this model gets more usage
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name == "ObjectDetectionPipelineTests":
            return True

        return False

243
244
245
246
    @unittest.skip("Skip for now. PR #22437 causes some loading issue. See (not merged) #22656 for some discussions.")
    def test_can_use_safetensors(self):
        super().test_can_use_safetensors()

NielsRogge's avatar
NielsRogge committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    # special case for head models
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "DetaForObjectDetection":
                labels = []
                for i in range(self.model_tester.batch_size):
                    target = {}
                    target["class_labels"] = torch.ones(
                        size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
                    )
                    target["boxes"] = torch.ones(
                        self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
                    )
                    target["masks"] = torch.ones(
                        self.model_tester.n_targets,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                        device=torch_device,
                        dtype=torch.float,
                    )
                    labels.append(target)
                inputs_dict["labels"] = labels

        return inputs_dict

    def setUp(self):
        self.model_tester = DetaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DetaConfig, has_text_modality=False)

    def test_config(self):
        # we don't test common_properties and arguments_init as these don't apply for DETA
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()

    def test_deta_model(self):
287
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaModel")
NielsRogge's avatar
NielsRogge committed
288
289
        self.model_tester.create_and_check_deta_model(*config_and_inputs)

290
    def test_deta_freeze_backbone(self):
291
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaModel")
292
293
294
        self.model_tester.create_and_check_deta_freeze_backbone(*config_and_inputs)

    def test_deta_unfreeze_backbone(self):
295
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaModel")
296
297
        self.model_tester.create_and_check_deta_unfreeze_backbone(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
298
    def test_deta_object_detection_head_model(self):
299
        config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class_name="DetaForObjectDetection")
NielsRogge's avatar
NielsRogge committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        self.model_tester.create_and_check_deta_object_detection_head_model(*config_and_inputs)

    @unittest.skip(reason="DETA does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="DETA does not have a get_input_embeddings method")
    def test_model_common_attributes(self):
        pass

    @unittest.skip(reason="DETA is not a generative model")
    def test_generate_without_input_ids(self):
        pass

    @unittest.skip(reason="DETA does not use token embeddings")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_feature_levels,
                    self.model_tester.encoder_n_points,
                ],
            )
            out_len = len(outputs)

            correct_outlen = 8

            # loss is at first position
            if "labels" in inputs_dict:
                correct_outlen += 1  # loss is added to beginning
            # Object Detection model returns pred_logits and pred_boxes
            if model_class.__name__ == "DetaForObjectDetection":
                correct_outlen += 2

            self.assertEqual(out_len, correct_outlen)

            # decoder attentions
            decoder_attentions = outputs.decoder_attentions
            self.assertIsInstance(decoder_attentions, (list, tuple))
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries],
            )

            # cross attentions
            cross_attentions = outputs.cross_attentions
            self.assertIsInstance(cross_attentions, (list, tuple))
            self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(cross_attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_feature_levels,
                    self.model_tester.decoder_n_points,
                ],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_feature_levels,
                    self.model_tester.encoder_n_points,
                ],
            )

    # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        # we take the second output since last_hidden_state is the second item
        output = outputs[1]

        encoder_hidden_states = outputs.encoder_hidden_states[0]
        encoder_attentions = outputs.encoder_attentions[0]
        encoder_hidden_states.retain_grad()
        encoder_attentions.retain_grad()

        decoder_attentions = outputs.decoder_attentions[0]
        decoder_attentions.retain_grad()

        cross_attentions = outputs.cross_attentions[0]
        cross_attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(encoder_hidden_states.grad)
        self.assertIsNotNone(encoder_attentions.grad)
        self.assertIsNotNone(decoder_attentions.grad)
        self.assertIsNotNone(cross_attentions.grad)

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    def test_forward_auxiliary_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.auxiliary_loss = True

        # only test for object detection and segmentation model
        for model_class in self.all_model_classes[1:]:
            model = model_class(config)
            model.to(torch_device)

            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

            outputs = model(**inputs)

            self.assertIsNotNone(outputs.auxiliary_outputs)
            self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1)

NielsRogge's avatar
NielsRogge committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = ["pixel_values", "pixel_mask"]
                expected_arg_names.extend(
                    ["head_mask", "decoder_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" in arg_names
                    else []
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
            else:
                expected_arg_names = ["pixel_values", "pixel_mask"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

    @unittest.skip(reason="Model doesn't use tied weights")
    def test_tied_model_weights_key_ignore(self):
        pass

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
504
505
506
507
508
509
            # Skip the check for the backbone
            for name, module in model.named_modules():
                if module.__class__.__name__ == "DetaBackboneWithPositionalEncodings":
                    backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
                    break

NielsRogge's avatar
NielsRogge committed
510
511
            for name, param in model.named_parameters():
                if param.requires_grad:
512
513
514
515
516
517
518
519
520
                    if (
                        "level_embed" in name
                        or "sampling_offsets.bias" in name
                        or "value_proj" in name
                        or "output_proj" in name
                        or "reference_points" in name
                        or name in backbone_params
                    ):
                        continue
NielsRogge's avatar
NielsRogge committed
521
522
523
524
525
526
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    # Inspired by tests.test_modeling_common.ModelTesterMixin.test_tied_weights_keys
    def test_tied_weights_keys(self):
        for model_class in self.all_model_classes:
            # We need to pass model class name to correctly initialize the config.
            # If we don't pass it, the config for `DetaForObjectDetection`` will be initialized
            # with `two_stage=False` and the test will fail because for that case `class_embed`
            # weights are not tied.
            config, _ = self.model_tester.prepare_config_and_inputs_for_common(model_class_name=model_class.__name__)
            config.tie_word_embeddings = True

            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
                is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
                self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )

NielsRogge's avatar
NielsRogge committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

TOLERANCE = 1e-4


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torchvision
@require_vision
@slow
class DetaModelIntegrationTests(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained("jozhang97/deta-resnet-50") if is_vision_available() else None

    def test_inference_object_detection_head(self):
        model = DetaForObjectDetection.from_pretrained("jozhang97/deta-resnet-50").to(torch_device)

        image_processor = self.default_image_processor
        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)

        expected_shape_logits = torch.Size((1, 300, model.config.num_labels))
        self.assertEqual(outputs.logits.shape, expected_shape_logits)

        expected_logits = torch.tensor(
            [[-7.3978, -2.5406, -4.1668], [-8.2684, -3.9933, -3.8096], [-7.0515, -3.7973, -5.8516]]
        ).to(torch_device)
        expected_boxes = torch.tensor(
            [[0.5043, 0.4973, 0.9998], [0.2542, 0.5489, 0.4748], [0.5490, 0.2765, 0.0570]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4))

        expected_shape_boxes = torch.Size((1, 300, 4))
        self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
        self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4))

        # verify postprocessing
        results = image_processor.post_process_object_detection(
            outputs, threshold=0.3, target_sizes=[image.size[::-1]]
        )[0]
        expected_scores = torch.tensor([0.6392, 0.6276, 0.5546, 0.5260, 0.4706], device=torch_device)
        expected_labels = [75, 17, 17, 75, 63]
        expected_slice_boxes = torch.tensor([40.5866, 73.2107, 176.1421, 117.1751], device=torch_device)

        self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
        self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
        self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))

    def test_inference_object_detection_head_swin_backbone(self):
        model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large").to(torch_device)

        image_processor = self.default_image_processor
        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)

        expected_shape_logits = torch.Size((1, 300, model.config.num_labels))
        self.assertEqual(outputs.logits.shape, expected_shape_logits)

        expected_logits = torch.tensor(
            [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]]
        ).to(torch_device)
        expected_boxes = torch.tensor(
            [[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4))

        expected_shape_boxes = torch.Size((1, 300, 4))
        self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
        self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4))

        # verify postprocessing
        results = image_processor.post_process_object_detection(
            outputs, threshold=0.3, target_sizes=[image.size[::-1]]
        )[0]
        expected_scores = torch.tensor([0.6831, 0.6826, 0.5684, 0.5464, 0.4392], device=torch_device)
        expected_labels = [17, 17, 75, 75, 63]
        expected_slice_boxes = torch.tensor([345.8478, 23.6754, 639.8562, 372.8265], device=torch_device)

        self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
        self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
        self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))