test_modeling_paligemma.py 16.7 KB
Newer Older
Pablo Montalvo's avatar
Pablo Montalvo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch PaliGemma model. """

import gc
import unittest

import requests
from parameterized import parameterized

from transformers import (
    PaliGemmaConfig,
    PaliGemmaForConditionalGeneration,
    PaliGemmaProcessor,
    is_torch_available,
    is_vision_available,
)
from transformers.testing_utils import (
    require_bitsandbytes,
    require_torch,
    require_torch_sdpa,
    slow,
    torch_device,
)

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor


if is_torch_available():
    import torch
else:
    is_torch_greater_or_equal_than_2_0 = False

if is_vision_available():
    from PIL import Image


class PaliGemmaVisionText2TextModelTester:
    def __init__(
        self,
        parent,
        ignore_index=-100,
        image_token_index=98,
        projector_hidden_act="gelu",
        seq_length=7,
        vision_feature_select_strategy="default",
        vision_feature_layer=-1,
        projection_dim=32,
        text_config={
            "model_type": "gemma",
            "seq_length": 128,
            "is_training": True,
            # "use_input_mask": True,
            "use_token_type_ids": False,
            "use_labels": True,
            "vocab_size": 99,
            "hidden_size": 32,
            "num_hidden_layers": 2,
            "num_attention_heads": 4,
            "num_key_value_heads": 1,
            "head_dim": 8,
            "intermediate_size": 37,
            "hidden_activation": "gelu_pytorch_tanh",
            "hidden_dropout_prob": 0.1,
            "attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "type_vocab_size": 16,
            "type_sequence_label_size": 2,
            "initializer_range": 0.02,
            "num_labels": 3,
            "num_choices": 4,
            "pad_token_id": 0,
        },
        is_training=True,
        vision_config={
            "use_labels": True,
            "image_size": 30,
            "patch_size": 2,
            "num_image_tokens": 4,
            "num_channels": 3,
            "is_training": True,
            "hidden_size": 32,
            "projection_dim": 32,
            "num_key_value_heads": 1,
            "num_hidden_layers": 2,
            "num_attention_heads": 4,
            "intermediate_size": 37,
            "dropout": 0.1,
            "attention_dropout": 0.1,
            "initializer_range": 0.02,
        },
        use_cache=False,
    ):
        self.parent = parent
        self.ignore_index = ignore_index
        self.image_token_index = image_token_index
        self.projector_hidden_act = projector_hidden_act
        self.vision_feature_select_strategy = vision_feature_select_strategy
        self.vision_feature_layer = vision_feature_layer
        self.text_config = text_config
        self.vision_config = vision_config
        self.seq_length = seq_length
        self.projection_dim = projection_dim

        self.num_hidden_layers = text_config["num_hidden_layers"]
        self.vocab_size = text_config["vocab_size"]
        self.hidden_size = text_config["hidden_size"]
        self.num_attention_heads = text_config["num_attention_heads"]
        self.is_training = is_training

        self.batch_size = 3
        self.num_channels = vision_config["num_channels"]
        self.image_size = vision_config["image_size"]
        self.encoder_seq_length = seq_length
        self.use_cache = use_cache

    def get_config(self):
        return PaliGemmaConfig(
            text_config=self.text_config,
            vision_config=self.vision_config,
            ignore_index=self.ignore_index,
            image_token_index=self.image_token_index,
            projector_hidden_act=self.projector_hidden_act,
            projection_dim=self.projection_dim,
            vision_feature_select_strategy=self.vision_feature_select_strategy,
            vision_feature_layer=self.vision_feature_layer,
        )

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor(
            [
                self.batch_size,
                self.vision_config["num_channels"],
                self.vision_config["image_size"],
                self.vision_config["image_size"],
            ]
        )
        config = self.get_config()

        return config, pixel_values

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
        attention_mask = input_ids.ne(1).to(torch_device)
        # setting the 4 first tokens to be image
        input_ids[:, :4] = config.image_token_index
        inputs_dict = {
            "pixel_values": pixel_values,
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class PaliGemmaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Model tester for `PaliGemmaForConditionalGeneration`.
    """

    all_model_classes = (PaliGemmaForConditionalGeneration,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_torchscript = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = PaliGemmaVisionText2TextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=PaliGemmaConfig, has_text_modality=False)

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
    def test_cpu_offload(self):
        pass

    @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
    def test_disk_offload_bin(self):
        pass

    @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
    def test_disk_offload_safetensors(self):
        pass

    @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
    def test_model_parallelism(self):
        pass

    @require_torch_sdpa
    @slow
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        self.skipTest(
            "Due to custom causal mask, there is a slightly too big difference between eager and sdpa in bfloat16."
        )

    @unittest.skip(
        reason="PaliGemmma's SigLip encoder uses the same initialization scheme as the Flax original implementation"
    )
    def test_initialization(self):
        pass

    # TODO extend valid outputs to include this test @Molbap
    @unittest.skip("PaliGemma has currently one output format.")
    def test_model_outputs_equivalence(self):
        pass

    # TODO fix the loss = nan in the testing configuration chosen @Molbap
    @unittest.skip(reason="Edge case giving loss nan values in testing configuration.")
    def test_determinism(self):
        pass

    @unittest.skip(reason="PaliGemma does not use feedforward chunking.")
    def test_feed_forward_chunking(self):
        pass

    @unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
    def test_save_load_low_cpu_mem_usage(self):
        pass

    @unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
    def test_save_load_low_cpu_mem_usage_checkpoints(self):
        pass

    @unittest.skip(reason="PaliGemma does not support low_cpu_mem_usage.")
    def test_save_load_low_cpu_mem_usage_no_safetensors(self):
        pass


@slow
@require_torch
class PaliGemmaForConditionalGenerationIntegrationTest(unittest.TestCase):
    def setUp(self):
        self.processor = PaliGemmaProcessor.from_pretrained("gv-hf/PaliGemma-test-224px-hf")

    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model = PaliGemmaForConditionalGeneration.from_pretrained("gv-hf/PaliGemma-test-224px-hf")
        prompt = ""
        image_file = (
            "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
        )
        raw_image = Image.open(requests.get(image_file, stream=True).raw)
        inputs = self.processor(text=prompt, images=raw_image, return_tensors="pt")
        # fmt: off
        EXPECTED_INPUT_IDS = torch.tensor([[256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000, 256000,
         256000, 256000, 256000, 256000,      2,    108]])
        # fmt: on
        self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))

        output = model.generate(**inputs, max_new_tokens=20)
        EXPECTED_DECODED_TEXT = "\ncow standing on the beach"  # fmt: skip

        self.assertEqual(
            self.processor.decode(output[0], skip_special_tokens=True),
            EXPECTED_DECODED_TEXT,
        )

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test_paligemma(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model_id = "gv-hf/PaliGemma-test-224px-hf"

        model = PaliGemmaForConditionalGeneration.from_pretrained("gv-hf/PaliGemma-test-224px-hf")
        processor = PaliGemmaProcessor.from_pretrained(model_id)

        prompt = "answer en Where is the cow standing?"
        image_file = (
            "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
        )
        raw_image = Image.open(requests.get(image_file, stream=True).raw)
        inputs = processor(text=prompt, images=raw_image, return_tensors="pt").to(torch.float16)

        output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
        EXPECTED_DECODED_TEXT = "answer en Where is the cow standing?\nbeach"  # fmt: skip

        self.assertEqual(
            processor.decode(output[0], skip_special_tokens=True),
            EXPECTED_DECODED_TEXT,
        )

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test_paligemma_batched(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model_id = "gv-hf/PaliGemma-test-224px-hf"

        model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
        processor = PaliGemmaProcessor.from_pretrained(model_id)

        prompts = [
            "answer en Where is the cow standing?",
            "",
        ]
        image1 = Image.open(
            requests.get(
                "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
                stream=True,
            ).raw
        )
        image2 = image1

        inputs = processor(text=prompts, images=[image1, image2], return_tensors="pt", padding=True)

        output = model.generate(**inputs, max_new_tokens=20)

        EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow standing on the beach"]  # fmt: skip

        self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)

    @slow
    @require_bitsandbytes
    def test_small_model_integration_test_batch(self):
        # Let' s make sure we test the preprocessing to replace what is used
        model = PaliGemmaForConditionalGeneration.from_pretrained("gv-hf/PaliGemma-test-224px-hf")
        # The first batch is longer in terms of text, the second will be padded.
        prompts = [
            "answer en Where is the cow standing?",
            "",
        ]
        image1 = Image.open(
            requests.get(
                "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
                stream=True,
            ).raw
        )
        image2 = image1

        inputs = self.processor(text=prompts, images=[image1, image2], return_tensors="pt", padding=True)

        output = model.generate(**inputs, max_new_tokens=20)

        EXPECTED_DECODED_TEXT = ["answer en Where is the cow standing?\nbeach", "\ncow standing on the beach"]  # fmt: skip
        self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)

    @slow
    @require_bitsandbytes
    def test_paligemma_index_error_bug(self):
        # This is a reproducer of https://github.com/huggingface/transformers/pull/28032 and makes sure it does not happen anymore
        # Please refer to that PR, or specifically https://github.com/huggingface/transformers/pull/28032#issuecomment-1860650043 for
        # more details
        model_id = "gv-hf/PaliGemma-test-224px-hf"
        model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)

        processor = PaliGemmaProcessor.from_pretrained(model_id)

        # Simulate a super long prompt
        prompt = "\n" * 200
        image_file = (
            "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
        )

        raw_image = Image.open(requests.get(image_file, stream=True).raw)
        inputs = processor(
            text=prompt,
            images=raw_image,
            return_tensors="pt",
        ).to(torch.float16)

        # Make sure that `generate` works
        _ = model.generate(**inputs, max_new_tokens=20)