trainer_seq2seq_qa.py 5.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""
from typing import Dict, List, Optional

from torch.utils.data import Dataset

from transformers import Seq2SeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput


if is_torch_tpu_available():
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met


class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):
    def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.eval_examples = eval_examples
        self.post_process_function = post_process_function

    # def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
    def evaluate(
        self,
        eval_dataset: Optional[Dataset] = None,
        eval_examples=None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
44
        **gen_kwargs,
45
    ) -> Dict[str, float]:
46
47
48
49
50
51
52
53
        gen_kwargs = gen_kwargs.copy()
        gen_kwargs["max_length"] = (
            gen_kwargs["max_length"] if gen_kwargs.get("max_length") is not None else self.args.generation_max_length
        )
        gen_kwargs["num_beams"] = (
            gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
        )
        self._gen_kwargs = gen_kwargs
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

        eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
        eval_examples = self.eval_examples if eval_examples is None else eval_examples

        # Temporarily disable metric computation, we will do it in the loop here.
        compute_metrics = self.compute_metrics
        self.compute_metrics = None
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        try:
            output = eval_loop(
                eval_dataloader,
                description="Evaluation",
                # No point gathering the predictions if there are no metrics, otherwise we defer to
                # self.args.prediction_loss_only
                prediction_loss_only=True if compute_metrics is None else None,
                ignore_keys=ignore_keys,
            )
        finally:
            self.compute_metrics = compute_metrics

        if self.post_process_function is not None and self.compute_metrics is not None:
            eval_preds = self.post_process_function(eval_examples, eval_dataset, output)
            metrics = self.compute_metrics(eval_preds)

            # Prefix all keys with metric_key_prefix + '_'
            for key in list(metrics.keys()):
                if not key.startswith(f"{metric_key_prefix}_"):
                    metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

            self.log(metrics)
        else:
            metrics = {}

        if self.args.tpu_metrics_debug or self.args.debug:
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
        return metrics

95
96
97
98
99
    def predict(
        self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test", **gen_kwargs
    ):
        self._gen_kwargs = gen_kwargs.copy()

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        predict_dataloader = self.get_test_dataloader(predict_dataset)

        # Temporarily disable metric computation, we will do it in the loop here.
        compute_metrics = self.compute_metrics
        self.compute_metrics = None
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        try:
            output = eval_loop(
                predict_dataloader,
                description="Prediction",
                # No point gathering the predictions if there are no metrics, otherwise we defer to
                # self.args.prediction_loss_only
                prediction_loss_only=True if compute_metrics is None else None,
                ignore_keys=ignore_keys,
            )
        finally:
            self.compute_metrics = compute_metrics

        if self.post_process_function is None or self.compute_metrics is None:
            return output

        predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
        metrics = self.compute_metrics(predictions)

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

        return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)