test_modeling_tf_electra.py 24 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre Debut's avatar
Lysandre Debut committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


Matt's avatar
Matt committed
17
18
from __future__ import annotations

Lysandre Debut's avatar
Lysandre Debut committed
19
20
21
import unittest

from transformers import ElectraConfig, is_tf_available
22
from transformers.testing_utils import require_tf, slow
Lysandre Debut's avatar
Lysandre Debut committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
Lysandre Debut's avatar
Lysandre Debut committed
27
28
29


if is_tf_available():
30
31
    import tensorflow as tf

Sylvain Gugger's avatar
Sylvain Gugger committed
32
    from transformers.models.electra.modeling_tf_electra import (
Lysandre Debut's avatar
Lysandre Debut committed
33
        TFElectraForMaskedLM,
34
        TFElectraForMultipleChoice,
Lysandre Debut's avatar
Lysandre Debut committed
35
        TFElectraForPreTraining,
36
        TFElectraForQuestionAnswering,
37
        TFElectraForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
38
        TFElectraForTokenClassification,
39
        TFElectraModel,
Lysandre Debut's avatar
Lysandre Debut committed
40
41
42
    )


43
44
class TFElectraModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
45
46
        self,
        parent,
47
48
49
50
51
52
53
54
55
56
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
57
        self.num_hidden_layers = 2
58
59
60
61
62
63
64
65
66
67
68
69
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Julien Plu's avatar
Julien Plu committed
70
        self.embedding_size = 128
71
72
73
74
75
76

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
77
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_causal_lm_base_model(
149
150
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
151
152
        config.is_decoder = True

153
154
        model = TFElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(inputs)
156
157

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
158
        result = model(inputs)
159

Sylvain Gugger's avatar
Sylvain Gugger committed
160
        result = model(input_ids)
161

162
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFElectraModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)

        # Also check the case where encoder outputs are not passed
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_causal_lm_base_model_past(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFElectraModel(config=config)

        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)

        output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_base_model_past_with_attn_mask(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFElectraModel(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
        outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        past_key_values = outputs.past_key_values

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat(
            [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
            axis=1,
        )

        output_from_no_past = model(
            next_input_ids,
            attention_mask=attn_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_base_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFElectraModel(config=config)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFElectraModel(config=config)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        encoder_hidden_states = encoder_hidden_states[:1, :, :]
        encoder_attention_mask = encoder_attention_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_for_masked_lm(
419
420
421
422
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
423
        result = model(inputs)
424
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
425

426
    def create_and_check_for_pretraining(
427
428
429
430
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
431
        result = model(inputs)
432
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
433

434
    def create_and_check_for_sequence_classification(
435
436
437
438
439
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
440
        result = model(inputs)
441
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
442

443
    def create_and_check_for_multiple_choice(
444
445
446
447
448
449
450
451
452
453
454
455
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFElectraForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
456
        result = model(inputs)
457
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
458

459
    def create_and_check_for_question_answering(
460
461
462
463
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
464
        result = model(inputs)
465
466
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
467

468
    def create_and_check_for_token_classification(
469
470
471
472
473
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
474
        result = model(inputs)
475
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


Lysandre Debut's avatar
Lysandre Debut committed
492
@require_tf
493
class TFElectraModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Lysandre Debut's avatar
Lysandre Debut committed
494
    all_model_classes = (
Julien Plu's avatar
Julien Plu committed
495
496
497
498
499
500
501
        (
            TFElectraModel,
            TFElectraForMaskedLM,
            TFElectraForPreTraining,
            TFElectraForTokenClassification,
            TFElectraForMultipleChoice,
            TFElectraForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
502
            TFElectraForQuestionAnswering,
Julien Plu's avatar
Julien Plu committed
503
        )
Lysandre Debut's avatar
Lysandre Debut committed
504
505
506
        if is_tf_available()
        else ()
    )
507
508
509
510
511
512
513
514
515
516
517
518
    pipeline_model_mapping = (
        {
            "feature-extraction": TFElectraModel,
            "fill-mask": TFElectraForMaskedLM,
            "question-answering": TFElectraForQuestionAnswering,
            "text-classification": TFElectraForSequenceClassification,
            "token-classification": TFElectraForTokenClassification,
            "zero-shot": TFElectraForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
519
    test_head_masking = False
520
    test_onnx = False
Lysandre Debut's avatar
Lysandre Debut committed
521
522

    def setUp(self):
523
        self.model_tester = TFElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
524
525
526
527
528
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

529
530
    def test_model(self):
        """Test the base model"""
Lysandre Debut's avatar
Lysandre Debut committed
531
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_causal_lm_base_model(self):
        """Test the base model of the causal LM model

        is_deocder=True, no cross_attention, no encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)

    def test_model_as_decoder(self):
        """Test the base model as a decoder (of an encoder-decoder architecture)

        is_deocder=True + cross_attention + pass encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)

    def test_causal_lm_base_model_past(self):
        """Test causal LM base model with `past_key_values`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past(*config_and_inputs)

    def test_causal_lm_base_model_past_with_attn_mask(self):
        """Test the causal LM base model with `past_key_values` and `attention_mask`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past_with_attn_mask(*config_and_inputs)

    def test_causal_lm_base_model_past_with_large_inputs(self):
        """Test the causal LM base model with `past_key_values` and a longer decoder sequence length"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model_past_large_inputs(*config_and_inputs)

    def test_decoder_model_past_with_large_inputs(self):
        """Similar to `test_causal_lm_base_model_past_with_large_inputs` but with cross-attention"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
569
570
571

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
572
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
573
574
575

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
576
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
577

578
579
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
580
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
581

582
583
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
584
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
585
586
587

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
588
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
589

Lysandre Debut's avatar
Lysandre Debut committed
590
591
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
592
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
Lysandre Debut's avatar
Lysandre Debut committed
593
594
595

    @slow
    def test_model_from_pretrained(self):
596
        # for model_name in TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
597
        for model_name in ["google/electra-small-discriminator"]:
598
            model = TFElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
599
            self.assertIsNotNone(model)
600
601


602
@require_tf
603
604
605
606
607
608
609
610
611
612
613
614
615
616
class TFElectraModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFElectraForPreTraining.from_pretrained("lysandre/tiny-electra-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6]
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3])

        expected_slice = tf.constant([[-0.24651965, 0.8835437, 1.823782]])
        tf.debugging.assert_near(output[:, :3], expected_slice, atol=1e-4)