test_modeling_mbart.py 17.5 KB
Newer Older
1
2
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
Sylvain Gugger's avatar
Sylvain Gugger committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
""" Testing suite for the PyTorch MBART model. """
Sylvain Gugger's avatar
Sylvain Gugger committed
16

17
18
19

import copy
import tempfile
20
21
22
23
import unittest

from transformers import is_torch_available
from transformers.file_utils import cached_property
24
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
25

26
27
28
from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, ids_tensor
29
30
31
32


if is_torch_available():
    import torch
33

34
    from transformers import (
35
36
        AutoTokenizer,
        BatchEncoding,
37
38
        MBartConfig,
        MBartForConditionalGeneration,
39
40
        MBartForQuestionAnswering,
        MBartForSequenceClassification,
41
        MBartModel,
42
    )
43
    from transformers.models.mbart.modeling_mbart import MBartDecoder, MBartEncoder
44
45


46
47
48
49
50
51
def prepare_mbart_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
52
53
    head_mask=None,
    decoder_head_mask=None,
54
55
56
57
58
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
59
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
60
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
61
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
62
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
63
64
65
66
67
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
68
69
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
70
    }
71
72


73
@require_torch
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
class MBartModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = MBartConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
137
        )
138
139
        inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
140
141

    def prepare_config_and_inputs_for_common(self):
142
143
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict
144

145
146
147
148
    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = MBartModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
149
        head_mask = inputs_dict["head_mask"]
150

151
        # first forward pass
152
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = MBartModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = MBartEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = MBartDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
class MBartModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (
        (MBartModel, MBartForConditionalGeneration, MBartForSequenceClassification, MBartForQuestionAnswering)
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (MBartForConditionalGeneration,) if is_torch_available() else ()
    is_encoder_decoder = True
    test_pruning = False
222
    test_head_masking = True
223
    test_missing_keys = False
224
225

    def setUp(self):
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        self.model_tester = MBartModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MBartConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

    # MBartForSequenceClassification does not support inputs_embeds
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in (MBartModel, MBartForConditionalGeneration, MBartForQuestionAnswering):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = MBartForConditionalGeneration(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
312
313


314
@require_torch
315
316
@require_sentencepiece
@require_tokenizers
317
318
class AbstractSeq2SeqIntegrationTest(unittest.TestCase):
    maxDiff = 1000  # longer string compare tracebacks
319
320
321
322
    checkpoint_name = None

    @classmethod
    def setUpClass(cls):
Lysandre Debut's avatar
Lysandre Debut committed
323
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.checkpoint_name, use_fast=False)
324
325
326
327
328
        return cls

    @cached_property
    def model(self):
        """Only load the model if needed."""
329
        model = MBartForConditionalGeneration.from_pretrained(self.checkpoint_name).to(torch_device)
330
331
332
333
334
335
        if "cuda" in torch_device:
            model = model.half()
        return model


@require_torch
336
337
@require_sentencepiece
@require_tokenizers
338
class MBartEnroIntegrationTest(AbstractSeq2SeqIntegrationTest):
339
340
341
342
343
344
345
    checkpoint_name = "facebook/mbart-large-en-ro"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
346
        'Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛a 艧i mizeria pentru milioane de oameni.',
347
    ]
348
    expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, 250004]
349

Sam Shleifer's avatar
Sam Shleifer committed
350
351
352
    @slow
    def test_enro_generate_one(self):
        batch: BatchEncoding = self.tokenizer.prepare_seq2seq_batch(
353
            ["UN Chief Says There Is No Military Solution in Syria"], return_tensors="pt"
Sam Shleifer's avatar
Sam Shleifer committed
354
355
356
357
358
        ).to(torch_device)
        translated_tokens = self.model.generate(**batch)
        decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
        self.assertEqual(self.tgt_text[0], decoded[0])
        # self.assertEqual(self.tgt_text[1], decoded[1])
359
360

    @slow
Sam Shleifer's avatar
Sam Shleifer committed
361
    def test_enro_generate_batch(self):
362
363
364
        batch: BatchEncoding = self.tokenizer.prepare_seq2seq_batch(self.src_text, return_tensors="pt").to(
            torch_device
        )
365
366
        translated_tokens = self.model.generate(**batch)
        decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
367
        assert self.tgt_text == decoded
368
369
370
371
372

    def test_mbart_enro_config(self):
        mbart_models = ["facebook/mbart-large-en-ro"]
        expected = {"scale_embedding": True, "output_past": True}
        for name in mbart_models:
373
            config = MBartConfig.from_pretrained(name)
374
375
376
377
378
379
380
381
            for k, v in expected.items():
                try:
                    self.assertEqual(v, getattr(config, k))
                except AssertionError as e:
                    e.args += (name, k)
                    raise

    def test_mbart_fast_forward(self):
382
        config = MBartConfig(
383
384
385
386
387
388
389
390
391
392
393
            vocab_size=99,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            add_final_layer_norm=True,
        )
394
        lm_model = MBartForConditionalGeneration(config).to(torch_device)
395
396
        context = torch.Tensor([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]]).long().to(torch_device)
        summary = torch.Tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]]).long().to(torch_device)
Sylvain Gugger's avatar
Sylvain Gugger committed
397
        result = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary)
398
        expected_shape = (*summary.shape, config.vocab_size)
399
        self.assertEqual(result.logits.shape, expected_shape)
400
401


402
@require_torch
403
404
@require_sentencepiece
@require_tokenizers
405
class MBartCC25IntegrationTest(AbstractSeq2SeqIntegrationTest):
406
407
408
409
410
411
412
413
414
    checkpoint_name = "facebook/mbart-large-cc25"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        " I ate lunch twice yesterday",
    ]
    tgt_text = ["艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria", "to be padded"]

    @unittest.skip("This test is broken, still generates english")
    def test_cc25_generate(self):
415
        inputs = self.tokenizer.prepare_seq2seq_batch([self.src_text[0]], return_tensors="pt").to(torch_device)
416
417
418
419
420
421
        translated_tokens = self.model.generate(
            input_ids=inputs["input_ids"].to(torch_device),
            decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"],
        )
        decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
        self.assertEqual(self.tgt_text[0], decoded[0])
422
423
424

    @slow
    def test_fill_mask(self):
425
426
427
        inputs = self.tokenizer.prepare_seq2seq_batch(["One of the best <mask> I ever read!"], return_tensors="pt").to(
            torch_device
        )
428
429
430
431
432
433
434
        outputs = self.model.generate(
            inputs["input_ids"], decoder_start_token_id=self.tokenizer.lang_code_to_id["en_XX"], num_beams=1
        )
        prediction: str = self.tokenizer.batch_decode(
            outputs, clean_up_tokenization_spaces=True, skip_special_tokens=True
        )[0]
        self.assertEqual(prediction, "of the best books I ever read!")